
RetSpill: Igniting User-Controlled Data to Burn Away Linux
Kernel Protections

Kyle Zeng
Arizona State University
zengyhkyle@asu.edu

Zhenpeng Lin
Northwestern University
zplin@u.northwestern.edu

Kangjie Lu
University of Minnesota

kjlu@umn.edu

Xinyu Xing
Northwestern University

xinyu.xing@northwestern.edu

Ruoyu Wang
Arizona State University

fishw@asu.edu

Adam Doupé
Arizona State University

doupe@asu.edu

Yan Shoshitaishvili
Arizona State University

yans@asu.edu

Tiffany Bao
Arizona State University

tbao@asu.edu

ABSTRACT
Leveraging a control flow hijacking primitive (CFHP) to gain root
privileges is critical to attackers striving to exploit Linux kernel vul-
nerabilities. Such attack has become increasingly elusive as security
researchers propose capable kernel security mitigations, leading to
the development of complex (and, as a trade-off, brittle and unreli-
able) attack techniques to regain it. In this paper, we obviate the
need for complexity by proposing RetSpill, a powerful yet elegant
exploitation technique that employs user space data already present
on the kernel stack for privilege escalation.

RetSpill exploits the common practice of temporarily storing
data on the kernel stack, such as when preserving user space regis-
ter values during a switch from the user space to the kernel space.
We perform a systematic study and identify four common practices
that spill user space data to the kernel stack. Although this practice
is perfectly within the kernel’s security specification, it introduces
a new exploitation path when paired with a control flow hijacking
(CFH) vulnerability, enabling RetSpill to turn such vulnerabilities
directly into privilege escalation reliably. Moreover, RetSpill can
bypass many defenses currently deployed in the Linux kernels. To
demonstrate the severity of this problem, we collected 22 real-world
kernel vulnerabilities and built a semi-automated tool that abuses
intentionally-stored, on-stack user space data for kernel exploita-
tion in a semi-automated fashion. Our tool generated end-to-end
privilege escalation exploits for 20 out of 22 CFH vulnerabilities.
Finally, we propose a new mechanism to defend against the attack.

CCS CONCEPTS
• Security and privacy→Operating systems security; Software
security engineering.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CCS ’23, November 26–30, 2023, Copenhagen, Denmark
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0050-7/23/11. . . $15.00
https://doi.org/10.1145/3576915.3623220

KEYWORDS
OS Security; Kernel Exploitation; Privilege Escalation
ACM Reference Format:
Kyle Zeng, Zhenpeng Lin, Kangjie Lu, Xinyu Xing, Ruoyu Wang, Adam
Doupé, Yan Shoshitaishvili, and Tiffany Bao. 2023. RetSpill: Igniting User-
Controlled Data to Burn Away Linux Kernel Protections. In Proceedings of
the 2023 ACM SIGSAC Conference on Computer and Communications Security
(CCS ’23), November 26–30, 2023, Copenhagen, Denmark. ACM, New York,
NY, USA, 15 pages. https://doi.org/10.1145/3576915.3623220

1 INTRODUCTION
As Linux becomes increasingly ubiquitous in cloud services, IoT
devices, and mobile phones1, Linux kernel vulnerabilities have
emerged to be a major threat to computer security. The successful
exploitation of a Linux kernel vulnerability can allow attackers to
elevate privileges and induce critical issues in victim systems.

Among Linux kernel vulnerabilities, those giving attackers the
ability to carry out Control Flow Hijack (CFH) is a prevalent and se-
rious type of flaw. Attackers exploit such vulnerabilities to achieve
control flow hijacking primitives (CFHP) (e.g., by overwriting a func-
tion pointer stored in the kernel heap), then use creative techniques
to bypass modern defenses (e.g., SMAP) before finally escalating
the attacker’s privilege level from normal users to root. CFH is pop-
ularly used for Linux kernel exploitation despite modern defenses.
For example, 15 out of 16 public real-world Linux kernel exploits
[23] reported to 2022 Google’s kCTF kernel bug bounty program
are control-flow hijacking attacks.

However, there is a significant gap from CFHP to a full kernel
privilege escalation exploit. In most modern cases, CFHP stems
from flaws on the heap (e.g., a function pointer overwrite stemming
from a use-after-free), instead of the stack. This is problematic
for exploitation, as building and triggering an ROP payload on
the heap is hard. Current solutions to this problem attempt to
pivot the stack pointer to a fake stack on the heap [19, 29, 46]
or in the flat physical mapping [70]. Such techniques are brittle
because they rely on either specific kernel memory layouts, the
existence of precise bespoke gadgets, or additional primitives (such
as register control) that are not always granted alongside the CFHP.
Unfortunately, for attackers, the decline of straightforward stack
1And perhaps, this year, on the desktop.

https://doi.org/10.1145/3576915.3623220
https://doi.org/10.1145/3576915.3623220

overflow vulnerabilities (and the adoption of effective mitigations,
such as stack canaries), leaves no other option than to accept this
complexity, brittleness, and additional primitive requirements.

In this paper, we bridge this exploitation gap by developing
a general technique to prepare ROP payloads on the stack. Our
technique exploits the intended design of the kernel stack: Linux’s
kernel stack is designed to save various forms of data, including
user-controlled data from user space. Attackers can leverage this
intended storage to store carefully-crafted malicious data in kernel
space, that they can access after triggering vulnerabilities through
stack-pivoting.

In studying the implications of these capabilities, we realized that
the Linux kernel stack design can be utilized as an attack surface
for malicious attackers. We built on our discovery to propose both
a novel exploitation technique and a new mitigation to defend
against it. Our technique, RetSpill, enables exploits that bypass most
existing kernel security mitigations (and emerging mitigations such
as Function Granular Kernel Address Space Layout Randomization
[34]) with no other requirements (such as register control or specific
memory configuration requirements that limit other techniques).
Importantly, RetSpill can be semi-automated, demonstrating that
the bar for successful Linux kernel attacks is significantly lower
than where it is currently assumed to be by the security community.

To comprehensively understand RetSpill’s potential impact, we
identify the scenarios where user-controlled data appears on the
kernel stack (§4.2), and we quantify the size of user-controlled
data to check if they are sufficient for a privilege escalation exploit.
We discover four different scenarios (one of them is discovered
by another researcher in parallel to this research [54]), three of
which are Linux kernel’s intended operations which are inevitable
by design. We also find that, Linux system calls typically leave
enough user-controlled data for attackers to launch a privilege
escalation exploit. Specifically, our measurement shows that, given
Linux kernel’s intended operations, the user-controlled data in
a Linux system call can hold 11 ROP gadgets on average. Even
worse, we found that given Linux kernel’s current design, 11 ROP
gadgets are sufficient for privilege escalation (§4.3). Through clever
downstream applications, one can take advantage of the 11 gadgets
to obtain unlimited Arbitrary Read/Write/Exec primitives in kernel
space and can even call and retrieve return values from kernel
functions.

We show the power of RetSpill by applying it to 22 real-world
vulnerabilities, demonstrating its ability to achieve successful ex-
ploitation on 21 of them, with fewer primitive requirements and
more reliability than existing public exploits for these vulnerabil-
ities. Critically, because the technique is so applicable, and very
few mitigations are effective against it to any extent, we were able
to implement RetSpill as a semi-automated pipeline that directly
synthesized 20 of these exploits. The only manual effort needed is
providing the CFHP and integrating the output of the pipeline into
the exploit.

Finally, we investigate RetSpill from a defensive perspective,
checking it against all existing commonly-adopted protections
(which cannot defend against it) and proposing new protection
to mitigate the impact of this dangerous exploitation technique and
re-raise the bar of Linux kernel exploitation.

In summary, this paper makes the following contributions:

• We identify the kernel stack as an attack surface in Control
Flow Hijacking exploitation and study the methods to place
user-controlled data on the kernel stack.

• By accessing user-controlled data on the kernel stack, we
devise a novel and powerful exploitation technique, RetSpill,
that can bypass commonly-adopted protections in the Linux
kernel and enable powerful exploitation of Control Flow
Hijacking vulnerabilities.

• We evaluate RetSpill on 22 real-world vulnerabilities and
demonstrate its ability to break the security boundary be-
tween user space and kernel space.

• We propose a new protection to harden Linux kernel security.
Combined with existing protections, the new defense can
mitigate the impact of the powerful RetSpill exploitation
technique.

To foster future research, we released the artifacts, including
RetSpill and all the experiment data2. This will benefit the commu-
nity by letting researchers understand the severity of RetSpill and
inspiring new protections to harden the Linux kernel.
Ethics. We have contacted the Linux kernel security team and
responsibly disclosed the exploitation technique. We are collaborat-
ing with the Linux community on the contribution of our defense.
The kernel security team has given us permission to publish this
research to the community.

2 BACKGROUND
In this section, we present the technical background of Linux kernel
security, including primitives, vulnerabilities, attacks, and modern
defenses.
Linux Kernel Exploits. Typically, the goal of a Linux kernel
exploit is to use kernel vulnerabilities to escalate privilege from
a less privileged user (e.g., nobody) to root. Compared to user
space-level exploitation, where, for example, an attack is considered
successful once a shell is achieved, Linux kernel exploitation needs
to additionally consider safely returning to the user space without
triggering a kernel panic or killing the escalated user space process.
ExploitationPrimitives and theControl FlowHijackingPrim-
itive. An exploitation primitive represents a machine state transi-
tion where a security policy is violated. With a control flow hijacking
primitive (CFHP), the attacker gains control of the kernel’s program
counter (PC). In this paper, we will use “CFHP” and the “PC-control”
terminology interchangeably. Note that we do not assume the ca-
pability of controlling registers other than the program counter, or
controlling the contents pointed to by any register.
Control Flow Hijacking Exploits. A control flow hijacking
(CFH) exploit starts with CFHP. It amplifies CFHP to better primi-
tives, such as Return Oriented Programming (ROP) and shellcode
execution, and eventually obtains privilege escalation. Before mod-
ern defenses, obtaining CFHP in the Linux kernel directly led to
privilege escalation, but it is no longer this simple in the modern
era.
Existing Protections Against CFH Attacks. With increas-
ingly powerful defenses developed by the Linux kernel, exploiting

2https://github.com/sefcom/RetSpill

https://github.com/sefcom/RetSpill

Technique Required Primitives Data Region Reliable*
Payload Still

Mitigation
Rewrite Applicable

ret2usr [37] CFHP user space ✓ ✓ ✗ SMEP
ret2dir [31] CFHP+physmap leak physmap ✗‡ ✓ ✗ NX-physmap

pivot to user [18] CFHP+codebase leak user space ✓ ✓ ✗ SMAP
change CR4 [49] CFHP+codebase leak+rdi control user space ✗§ ✓ ✗ CR-Pinning
run_cmd [24] CFHP+codebase leak+heap info leak+rdi control kernel heap ✓ ✓ ✗△ -

pivot to heap [19] CFHP+codebase leak+heap info leak+register control kernel heap ✓ ✗ ✓ -
KEPLER [70] CFHP+codebase leak+physmap leak+register control physmap ✗ ✓ ✓ -

set_memory_x [15] CFHP+codebase leak+heap info leak+rdi&rsi control kernel heap ✗§ ✗ ✓ -
RetSpill CFHP+codebase leak kernel stack ✓ ✓ ✓ -

Table 1: With the development of modern protections in the Linux kernel, exploiting CFH vulnerabilities requires many
primitives and becomes brittle. Our work, RetSpill, is a powerful exploitation technique that requires fewer primitives and yet
is still reliable. * Given all the required primitives, whether the technique can derive the target primitive without failures. ‡

ret2dir is reliable only if given a page frame info leak primitive. § need to obtain CFHP twice. △ run_cmd function can get
inlined, thus not exist, in some kernel builds.

s
ta

c
k
 g

ro
w

th

pt_regs

stack frames

pt_regs

random
padding

stack frames

stack
bottom

Normal Stack Randomized Stack

Figure 1: Kernel Stack Layout With and Without RAND-
KSTACK Protection
CFH vulnerabilities has become difficult. In a modern Linux kernel,
obtaining CFHP does not imply the ability to obtain root or even
carry out Return-Oriented-Programming (ROP) or arbitrary code
execution because of modern kernel hardening techniques.

Most protections aim to prevent attackers from accessing user
space data improperly. SMEP [47] and KPTI [64] prohibit executing
user space code from kernel space. SMAP [12] disallows the kernel
from reading/writing user space data directly. NX-physmap [31]
marks the physmap region as not executable. These protections limit
attackers’ capability to turn CFHP into arbitrary code execution.

Other protections were designed to limit attackers’ capabilities
despite limited code execution: CR Pinning [63] prevents unautho-
rized modification to the CR4 register (which contains bits to en-
able certain mitigations), thus preventing attackers from disabling
mitigations. STATIC_USERMODE_HELPER [35] prohibit abusing “user
mode helpers” to perform privilege escalation. RKP [56] disallows
directly modifying process credentials. pt-rand [14] invalidates
the technique of directly modifying kernel page tables.

Notably, RANDKSTACK [53] is a protection that aims to randomize
kernel stack layout, preventing attackers from exploiting use-of-
uninitialized-variable vulnerabilities. Its change to kernel stack
layout is shown in Figure 1. Similar to their use in user space ap-
plications, STACK CANARY mitigates stack-overflow vulnerabilities,
removing the possibility of overwriting the return address (and
higher memory addresses) to achieve ROP.
Bypassing exploitation protections. Because of strong stack
protections, most modern CFHPs happen as a result of kernel heap

misuse. Typically, an attacker overwrites (e.g., via heap overflow)
a function pointer in a victim object in the heap. The attacker
then invokes a trigger system call that calls the overwritten func-
tion pointer and obtains CFHP. As direct shellcode execution is no
longer viable (due to NX-physmap and SMEP), and stack control is
elusive (due to the use of stack canaries and death of stack overflow
vulnerabilities), a typical CFH exploit needs to combine the CFHP
with other primitives, such as a heap address disclosure, to obtain
stack control and start an ROP chain [13, 19, 29, 46] as shown in
Table 1.

Imperfect bypass: “pivot to heap”. Anecdotally, we observed
that most modern kernel exploits use heap-related vulnerabilities
and must prepare and trigger attack payloads on the heap. For
example, all 15 public kCTF CFHP exploits pivot to a fake stack in
the heap to achieve ROP. This has drawbacks: it does not support
rewriting payloads directly because the payload is in the kernel
heap, a region users do not have direct access. In other words, to
execute a different payload, the attacker needs to swap the heap
object containing the payload or even trigger the vulnerability
again, which significantly reduces reliability for exploits that need
to trigger different payloads to achieve privilege escalation [21, 33].
Additionally, these exploits rely on either specific kernel memory
layouts, the existence of precise bespoke gadgets, or additional
primitives (such as register control). As shown in Table 1, “pivot to
heap” requires more primitives than RetSpill, which significantly
increases the difficulty of developing exploits.

Kernel ROP. Kernel ROP, similar to that in user space, grants
attackers the ability to perform arbitrary execution by chaining
ROP gadgets together. Compared to user space ROP, kernel ROP
has two additional requirements. First, leaked information in the
ROP chain needs to be transferred back to user space. This can be
done by using the fact that registers are not cleared during CPU
privilege transition [38]. Attackers can load the leaked information
into a register, perform a privilege transition back to user space,
and obtain the leaked value. Second, ROP chains in kernel space
need to end gracefully to avoid panic. Currently, there are three
existing ways to achieve this: 1. return back to user space, such as
using KPTI trampoline [38]; 2. sleep indefinitely [74], which freezes
the current task; 3. kill the current task by invoking do_task_dead
function.

Kernel Stack and System Calls. In the Linux kernel, each
task has its own kernel space stack to facilitate the execution of
system calls invoked from user space. The kernel stack is allocated
as a fixed-size buffer at the creation of each kernel task [61]. The
kernel stack layout is shown in Figure 1. When the user space
invokes a system call, the program counter will switch to kernel
space functions and the stack pointer will be set to the kernel stack.
Then, the kernel will push the user space context, including all
user space registers, onto the bottom of the stack, and invoke the
corresponding system call handler. The saved user space context
is named pt_regs. When returning back to user space, the kernel
will restore the user space context and resume the execution of the
user space program.

Due to the fixed-sized nature of the kernel stack, developers
usually store large chunks of data in dynamically allocated mem-
ory regions (e.g., heap) to avoid stack exhaustion. However, for
performance considerations, some performance-critical system
calls [66, 67] still store large amounts of data on the kernel stack.

3 THREAT MODEL
In our threat model, the target Linux kernel has all the protections
as the model in Kepler [70], in addition to Function-Granular Kernel
Address Space Layout Randomization (FG-KASLR) [34], which is a
cutting-edge kernel hardening technique implemented recently.

Specifically, we allow the target Linux kernel enabling SMEP,
SMAP, KPTI, NX-physmap, CR Pinning, STATIC_USERMODE_HELPER,
RKP, pt-rand, RANDKSTACK, STACK CANARY, and FG-KASLR.

In terms of exploitation primitives, our model requires two primi-
tives: control-flow hijacking and kernel image base address leakage.
Both primitives are reasonable and can be achieved through a rea-
sonable number of Linux vulnerabilities (Table 4). Our required
primitives are fewer than all existing work (Table 1), as well as
many latest real-world kernel exploitation techniques such as those
published through Google kCTF [23].

4 EXPLOITATION TECHNIQUE DESIGN
A modern CFH exploit has two steps: 1) injecting user-controlled
data into kernel memory, and 2) using this controlled data for
ROP. Modern protections prevent attackers from directly accessing
user space data, leaving physmap and kernel heap the only known
choices for storing user-controlled ROP chains. The difficulty of
accessing these two regions induces the requirement of additional
exploitation primitives (such as register control or additional ad-
dress disclosures) onto modern CFH exploits.

Our proposed technique, RetSpill, is based on the insight that
potentially attacker-controlled user data is loaded, by design, onto
the kernel stack during system calls. When PC-control is obtained,
which happens inside the triggering system call after the attacker
sets up the conditions for the Control Flow Hijacking Primitive
(CFHP), the attacker can use this controlled user data readily on
the kernel stack to launch code reuse attacks (e.g., ROP).

However, this is not enough for full exploits: the individual re-
sulting ROP attacks are limited, and our study of 22 kernel vulnera-
bilities (§7.1) shows that some triggering system calls have as few as
seven controllable gadgets for ROP payload. This leads to RetSpill’s
other contribution: because stack layouts of functions are fixed

during compilation, attackers can repeatedly invoke the triggering
system call unlimited times to trigger different ROP payloads.

With this, RetSpill can obtain unlimited arbitrary read/write/exec
in kernel space, thus completely breaking the security boundary
between user and kernel space despite the presence of modern
kernel protections. This is more severe than existing “single-shot”
exploitation techniques [70]: as shown in §7.3, RetSpill can bypass
more protections than existing techniques.

4.1 Data Spillage
Attacker-controlled user space data can spill onto the kernel stack
either directly or indirectly.
Direct Data Spillage refers to the situation where user data is
loaded directly onto the kernel stack in one system call. The poll
system call shown in Listing 1 performs direct data spillage when
it uses copy_from_user to copy user space data onto the kernel
stack directly.
Indirect Data Spillage happens when data is loaded onto the ker-
nel stack through multiple system calls. For example, with carefully
crafted arguments, a call to the open system call stores data from
user space to the kernel heap, and a subsequent call to readlink
loads this controlled data to the kernel stack.

In this work, we mainly focus on systematically analyzing direct
data spillage. We first investigate how user space data can flow into
kernel space during system calls. We identify two methods: 1) user
space registers and 2) user space memory. More specifically, when
a user space program invokes a system call, its general-purpose
registers contain data that can potentially flow into kernel space.
During the lifetime of a system call, the kernel may need additional
information from user space memory to complete the system call,
which leads to userspace data flowing into kernel space.

To comprehensively discover direct user data spillage causes, we
perform taint analysis on user space data (both user space registers
and memory) and observe the traces on kernel stack in triggering
system calls to identify data spillage causes as detailed in §6.2. By
manually analyzing the taint analysis results, we identify three
causes of direct user data spillage.

Depending on where user data is temporarily stored, there are
potentially many variants of indirect data spillage methods. In this
work, we empirically identify one general case of indirect data
spillage where user data is temporarily stored on the kernel stack
and shared across system calls because of uninitialized memory.
We leave the systematic study of indirect data spillage as future
work.

4.2 Data Spillage Sources
We identified four data spillage sources as follows:
Valid Data. In a Linux kernel, user space data is sometimes
directly copied onto the kernel stack for performance reasons. Take
the simplified poll system call handler in Listing 1 as an example. It
copies a considerable amount (0x1e0 bytes in our build) of user space
data into stack_pps, which is on the kernel stack. If an attacker
controls a file object in user space, whenCFHP is obtained through
the file->f_op->poll call, they will have control of 0x1e0 bytes
on the kernel stack. The attacker can then use an add rsp, X; ret

1 int do_sys_poll(...)
2 {
3 long stack_pps[POLL_STACK_ALLOC/sizeof(long)];
4 struct poll_list *walk = (struct poll_list *)stack_pps;
5
6 // copy user space data onto kernel stack
7 copy_from_user(walk->entries, ufds, sizeof(walk->entries);
8
9 // invoke poll handler for each fd
10 pfd = walk->entries;
11 for(; ... ; pfd++) {
12 file = fdget(pfd).file;
13 file->f_op->poll(...);
14 }
15 ...
16 }

Listing 1: The simplified code snippet of poll system call
handler in the Linux kernel.
gadget to pivot into the controlled region and launch code reuse
attacks. During the lifetime of the poll system call, the on-stack
data is valid (i.e., its presence on the kernel stack is not a security
violation), but it is used for malicious purposes.
Preserved Registers. Each user space thread has its own kernel
stack. When the user space thread invokes a system call, the kernel
will switch to using the associated kernel stack by setting the rsp
register. Immediately following the stack pointer change, the kernel
pushes the user space context onto the kernel stack to preserve
the context as shown in Figure 1. Here, the “user space context” is
a data structure called pt_regs [65] that includes all of the user
space registers. These values can be carefully set by malicious users
before invoking the system call.

In other words, a fully user-controllable region is at the bottom
of the kernel stack. When the attacker triggers a CFHP, they can
use the controlled pt_regs region as a ROP payload.
Calling Convention. In the Linux kernel’s calling conven-
tion [62], callee and caller functions both need to preserve sets
of registers, termed “callee-saved” and “caller-saved” registers. The
way compilers implement the calling convention is by emitting
code to push the registers that will be potentially clobbered in the
function to the kernel stack at the function prologue and pop them
at the epilogue. This mechanism gives attackers two ways to place
controlled data onto the stack.

First, registers can be pushed onto the kernel stack when the
kernel invokes the actual system call handler function to serve the
system call. System call handlers are invoked right after userspace
registers are pushed onto the kernel stack as pt_regs. At the time of
invoking system call handlers, the registers still contain userspace
data. Since system call handlers are calling convention compliant,
they will save registers that will be clobbered within the handler
by pushing them onto the stack as well.

Second, the system call handlers might call other helper func-
tions, which will also be calling convention compliant, and registers
still containing user space data (or reloaded with user space data in
the course of system call servicing) might be saved as a result.
Uninitialized Memory. Since there is only one kernel stack for
each thread, data used in previous system calls within the same
thread can be left on the kernel stack if not overwritten by the
triggering system call. Due to the fact that the kernel’s control flow
is usually hijacked in the middle of a function, variables used after
the hijacking point will not be initialized by design. In other words,

1 int __sys_recvfrom(...)
2 {
3 struct sockaddr_storage address;
4 ...
5 // initialize `address`
6 sock->ops->recvmsg(...);
7 ...
8 // copy address to user space
9 copy_to_user(uaddr, &address, ulen);
10 }

Listing 2: The simplified code snippet of recvfrom system
call handler in the Linux kernel.

hijacking control flow can create unexpected uninitialized memory
situations on the kernel stack that would not be a security problem
in normal operation and could result in a considerable number of
usable data from the attackers’ perspective.

An attacker can then carry out a targeted stack spray attack [45]
to place controlled data on specified stack locations.

As shown in Listing 2, the address variable will be initialized
inside the target socket’s recvmsg handler, which means it will
always be initialized and copied to user space in the normal con-
trol flow. But if the sock data structure is fully overwritten by
an attacker through a vulnerability, when CFHP is obtained at
sock->ops->recvmsg, the address variable is not initialized, thus
susceptible to the targeted stack spray attack.

4.3 Weaponizing Spilled User Space Data
After obtaining enough data spillage on the kernel stack, the mo-
ment an attacker invokes the triggering system call and acquires
CFHP, they have stack control as well. In other words, the attacker
can immediately launch code reuse attacks. In this work, we focus
on executing a ROP payload.

Starting ROP. In the optimal case, the stack pointer might be
pointing directly to user-controlled datawhen the CFHP is triggered.
However, even if it is not, the typical proximity of user-controlled
data to the stack pointer means that the attacker can “reach” it by
using the CFHP to redirect execution to a stack-shifting gadget
such as add rsp, X; ret. After this redirection, the attacker’s
ROP chain, stored in user-controlled portions of the kernel stack,
will be triggered.

Small Chains. However, the initial ROP payloads enabled by
RetSpill are too small for full exploits. This is due to three factors.

First, different triggering system calls exhibit different data-
spilling behaviors depending on how they process userspace data.
While the amount of Preserved Registers is stable across different
system calls, the amount of Valid Data, data spilled due to Calling
Conventions, and Uninitialized Memory varies widely.

Second, the CFHP itself might require specific inputs in some
registers and memory to trigger successfully. For example, trigger-
ing the CFHP for CVE-2010-2959 requires a specific value in the fd
argument (passed via the rdi register) to the triggering ioctl sys-
tem call. This means that spilled values from rdi, regardless of the
spillage method, cannot be used in the ROP chain (as they cannot
have arbitrary values). Other vulnerabilities require more argu-
ments to have precise values, reducing the amount of controllable
spilled data further.

Third, spilled user space data is not contiguous, and thus some
of the resulting gadgets must be dedicated to shifting the stack to
the next controllable spilled data.

With resulting ROP chains as short as 7 gadgets (as measured in
§7.1), some cleverness is required to achieve full exploitation.
Independent ROP. Recall that the CFHP that initiates the ROP
attack is provided by an overwritten victim object representing
a system resource in kernel heap. Thus, all threads in the exploit
process have access to the system resource, and also the victim
object. An attacker can create a separate thread to execute the ROP
chain so that ROP chain termination does not affect the main thread.
This approach makes each ROP chain execution isolated in each
thread, which means each ROP chain execution is performed under
a different task context.

Notice that this step does not involve re-triggering vulnerabilities
for additional ROP chain iterations. Hence, in practice, it does not
introduce extra unreliability for exploits (for example, from having
to otherwise repeat heap massaging efforts).

There are two advantages to this independent ROP chain execu-
tion. First, as described in §2, it enables the use of the do_task_dead
function as an epilogue gadget in the ROP chain to end the chain
gracefully. Second, since the ROP payload is executed in a new
thread, even if the ROP payload fails, the kernel will only terminate
the executing thread instead of the main thread. Therefore, as we
will describe in §7.3, one could repetitively try the execution of ROP
payloads to bypass certain probabilistic kernel protections without
exploit reliability degradation.
Unlimited Arbitrary Read/Write/Exec. The victim object that
gives the attacker CFHP is typically on the kernel heap and the
attacker can put data on the kernel stack. Each time the attacker
invokes the triggering system call, which grants the attacker CFHP,
they can put different controlled data on the kernel stack and then
invoke a different ROP chain. Combined with the Independent ROP
Chain primitive, this feature of RetSpill effectively gives the attacker
the ability to trigger different ROP chains as many times as desired
without swapping payload in the kernel heap. Then the attacker
can have unlimited Arbitrary Read/Write primitive, as well as the
ability to invoke arbitrary functions in kernel space and get back
the return values unlimited times.

In other words, RetSpill turns one single CFHP into unlimited
Arbitrary Read/Write/Exec without sacrificing exploit reliability.
Putting it all together. At this point, the controlled victim object
in the kernel heap becomes something analogous to a backdoor. By
using the triggering system call on the victim object, the attacker
can do Arbitrary Read/Write in kernel space and invoke Arbitrary
Kernel Function Calls and obtain the return values. Moreover, they
can perform all these actions in kernel space cleanly for unlimited
times from separate task contexts. In other words, the boundary
between the user space and the kernel space is completely broken.

5 RETSPILL VS MODERN DEFENSES
In this section, we state how RetSpill manages to bypass a series
of modern defenses in the Linux kernel. These defenses cover all
existing protections deployed in kernels shipped in major Linux-
based operating systems (listed in Table 3). We also evaluate the
effectiveness of emerging protections that are not implemented,

Defense
CFHP RetSpill

Deployed?†
Achievable? Works?

SMEP/SMAP/KPTI ✓ ✓ ✓

RANDKSTACK ✓ ✓ ✓

STACKLEAK ✓ ✓ ✗

FG-KASLR ✓ ✓ ✗

KCFI/IBT ✓ ✓ ✗

Shadow Stack* ✓ ✓‡ ✗

CFI+Shadow Stack* ✗ ✗ ✗

Table 2: RetSpill’s applicability against all modern defenses. *
Shadow Stack is unavailable in Linux on x86_64 architecture.
†Whether the defense is deployed in at least one of themajor
Linux distros mentioned in Table 3. ‡ RetSpill works with
restrictions.

OS Version Status

Ubuntu 22.04 ✗

Debian 11 ✗

CentOS 9 ✓

Fedora 36 ✗

Arch Linux 2022.10.01 ✗

Mageia 8 ✗

Mint 21 ✗

Open SUSE Leap 15.4 ✗

Table 3: The panic_on_oops configuration in major Linux-
based operating systems.

not production-ready, or not deployed yet. A brief summary can be
found in Table 2.
SMEP/SMAP/KPTI. These protections aim to prevent attackers
from directly accessing user space data when obtaining CFHP in
kernel space. But RetSpill does not rely on data in the user space.
Instead, it solely relies on user-controlled data on the kernel stack.
In other words, RetSpill shows that user-controlled data on the
kernel stack alone is enough to compromise the security of the full
system, thus bypassing these three protections.
RANDKSTACK. RANDKSTACK [53] introduces a randomized
offset between function stack frames and the pt_regs region as
shown in Figure 1. This protection aims to randomize the kernel
stack layout at each system call entry to prevent deterministic data
control on the kernel stack when CFHP is obtained. However, this
protection only mitigates attacks that access data spillage from
Preserved Registers and Uninitialized Memory. Attackers can still
deterministically access controlled data spilled by Valid Data and
Calling Convention because they are part of the stack frames.

Moreover, we discover that Preserved Registers data spillage can
still be used for exploitation despite the presence of this protection.
Due to the low entropy (5-bit [53]) in the randomized offset of the
current design, attackers can hardcode an offset and prepend a “ret-
sled” (a series of ret gadgets) to the actual ROP chain to increase
the chance of executing the actual ROP payload correctly.

More importantly, if the target system disables panic_on_oops,
which is true by default for most major Linux-based operating

Taint AnalysisSystem Call
Snapshot

Data Spillage Analysis

ROP Chain
Generation

IGNI

Kernel Image

CFHP

PE Exploits

Figure 2: IGNI Design Overview

systems, as shown in Table 3, RANDKSTACK can be fully bypassed.
In other words, RetSpill can bypass RANDKSTACK on most of the
Linux distros. The reason is that with panic_on_oops disabled, an
oops in task contexts will not crash the kernel. By using threads to
trigger the payload, if an attempt fails, only the offending thread
will be terminated. The exploit process will be kept intact and can
continue attempts until the exploit succeeds. Such a create-thread-
and-retry attack works only if failed attempts only generate oops
and do not crash the kernel. We demonstrate that this is realistic—
by calling a system call that is known to place “safe" data, such
as NULL pointers, on the kernel stack multiple times to ensure
that failed attempts can only trigger invalid-memory access and
generate oops. To the best of our knowledge, we are the first to
demonstrate that RANDKSTACK can be fully bypassed through
recovery from oops.

STACKLEAK/STRUCTLEAK/INITSTACK. These protections
prevent attackers from accessing uninitializedmemory. More specif-
ically, STACKLEAK [50] clears the kernel stack after each system
call and INITSTACK [51]/STRUCTLEAK [43] ensure stack variables
are initialized before use. In other words, they only prevent user
data spillage from Uninitialized Memory. RetSpill is still effective
by using other user data spillage methods to obtain stack control.

FG-KASLR. Function Granular Kernel Address Space Layout
Randomization (FG-KASLR) [34] shuffles all kernel function ad-
dresses during boot time to protect the kernel from CFH attacks.
However, function-level randomization is not enough to mitigate
RetSpill. Other code snippets, such as assembly stubs, can also be
compiled into executable sections with fixed offsets in the kernel.
With RetSpill, attackers can look for ROP gadgets in the position-
invariant code and use the arbitrary-read primitive to dynamically
resolve function addresses, as demonstrated by Dang Khac Minh
Le [38]. Then they can trigger the payload again and use the re-
solved function addresses to achieve the exploitation using RetSpill.

KCFI/IBT. KCFI [60] and Indirect Branch Tracking (IBT) [76]
are two control-flow integrity (CFI) protection schemes merged
into the Linux kernel recently. They both aim to protect the Linux
kernel from forward-edge control-flow hijacking attacks. While
they make it harder, they do not eliminate CFHP attacks.

Due to compatibility issues, even with the presence of these
strong protections, some call targets in the Linux kernel are still
not protected, susceptible to CFHP attacks. For example, in a ker-
nel compiled with KCFI, __efi_call function does not verify its
call targets. An attacker can overwrite the call target and obtain
PC-control. We confirmed with the Linux kernel team that some
call targets are not verified due to incompatibility between some
subsystems and the CFI schemes.

Even with perfect implementation, attackers can still obtain PC-
control by hijacking backward-edge control flow because KCFI/IBT
does not protect them. For example, attackers have demonstrated
the capability of turning a heap-based vulnerability to the kernel
stack (dubbed kernel stack overflow primitive) [30], which can
tamper the backward-edge control flow to obtain PC-control.

Once PC-control is obtained, attackers can carry out RetSpill
despite the presence of KCFI and IBT because RetSpill itself does
not rely on forward-edge control-flow hijacking.
Shadow Stack. Shadows Stack is proposed to protect backward-
edge control in the Linux kernel. However, it is not implemented yet
in the Linux kernel for the x86_64 architecture. We only analyze its
security guarantee against RetSpill in theory. In kernels protected
by Shadow Stack, attackers can obtain PC-Control from forward-
edge control flow hijacking, but they cannot ROP. To carry out
RetSpill, attackers can use other code reuse attacks that do not rely
on backward-edge control flow hijacking, such as JOP[3]/PCOP[55]
to utilize data spillage from user space,
CFI+Shadow Stack. In theory, on a kernel deployed with per-
fectly implemented CFI schemes and Shadow Stack, attackers can-
not obtain CFHP anymore, which prevents RetSpill.

6 SEMI-AUTOMATIC RETSPILL
RetSpill has a critical impact on the Linux kernel because it can
not only escalate privilege but also has the potential to achieve
the escalation in a semi-automated pipeline. To show the feasi-
bility of semi-automation, we represent IGNI, a framework that
can semi-automatically generate RetSpill attacks for many real-
world CFH cases. As the goal of this work is to show the feasibility
rather than creating a tool to facilitate malicious attacks, we only
take one attack payload for privilege escalation, namely execut-
ing commit_creds(init_cred) and returning back to user space
gracefully. Creating attacking tools that can comprehensively lever-
age different attack vectors is out of the scope of this paper.

The design of IGNI is shown in Figure 2. IGNI takes a proof-of-
concept (PoC) binary that demonstrates CFHP and a target kernel
image as input, and outputs all the information needed for carrying
out RetSpill. More specifically, it outputs 1) the address of a stack-
shifting gadget that can transfer the initial CHFP into kernel stack
and 2) an ignite function that performs data spillage, invokes the
triggering system call, and leads to PE automatically. By setting the
initial CFHP to the stack-shifting gadget and changing the original
triggering system call to ignite function, the initial crashing PoC
is turned into a full-fledged PE exploit.

Our approach relies on virtual machine (VM) snapshots. We take
a VM snapshot when the triggering system call just enters kernel
space, which ensures deterministic CFHP. Then, we analyze all user

T0

Target Window

T1 T2 T3
Exploit Start Payload Written TSC CFHP Obtained

TSCC

Figure 3: CFH exploits timeline

data that flows into the kernel space and identify user data that
can be used for data spillage. Finally, we use symbolic execution
to generate a ROP chain using the spilled data and link it with the
initial CFHP to perform a full exploitation.

The design of IGNI involves the three following challenges:

• How to identify the triggering system call when thousands
of irrelevant system calls will be invoked during the lifespan
of an exploit process?

• Once we locate the triggering system call, how to distinguish
user-controllable data from others?

• After finding the kernel data provenance, how to generate a
PE payload on the discrete controlled region?

We detail how to conquer these challenges in this section.

6.1 Snapshotting the Triggering System Call
In Linux kernel exploits, CFHP is usually obtained through sys-
tem calls. We call the system call that obtains CFHP the triggering
system call (TSC). During the life span of the exploit process, thou-
sands of irrelevant system calls will be invoked, it is challenging to
identify the correct system call that will lead to CFHP and take a
VM snapshot at its entrance. For example, in the exploit for CVE-
2017-7533 [1], attackers use write system call to hijack the kernel
control flow. The one write system call leading to CFHP is TSC,
while another write system call displaying some debug messages
is irrelevant.

We define triggering system call candidates (TSCC) as system
calls invoked by the exploit process and having the same syscall
number as TSC. The challenge becomes: how to identify the TSC
among all TSCCs while the number and order of TSCCs may differ
across runs (because of threading).

Intuitively, among all TSCCs, the last one invoked before obtain-
ing CFHP is TSC. However, this assumption is wrong. In practice,
the exploit process can issue other system calls, including other
TSCCs, after issuing the TSC. The reasons are twofold. First, after
the TSC is invoked, before it reaches the code that grants CFHP,
other threads in the exploit process may race with the execution
and invoke more TSCCs. Second, even when the triggering system
call is executing, the kernel may stop its execution halfway and
switch to execute other threads, which can issue more system calls,
because of the voluntary preemption mechanism in the Linux ker-
nel. Depending on how the exploit is implemented, the number of
extra TSCCs after invoking the TSC can be drastically different.

One naive solution will be taking a VM snapshot at the entrance
of each TSCC and verifying whether it is the TSC. This solution
does not work because constantly taking VM snapshots alters the
timing difference between kernel threads, thus failing time-sensitive
exploits (i.e., race condition exploits). Notice that binary search does
not apply either because the number of TSCCs varies across runs.

We show the timeline of CFH exploits with respect to TSCC
in Figure 3. Our heuristic-based search algorithm is built upon an
insight that TSC can be deduced from a snapshot taken between T1-
T2. This is because after the exploit payload is placed correctly in the
heap, CFHP can be obtained deterministically [75]. To deduce the
TSC, we run the snapshot to T3, obtain information about the TSC
thread (task_struct), rewind the snapshot, and take a snapshot
at TSC using the thread-specific information.

To take a snapshot between T1-T2, we use a search algorithm
with increasing granularity. More specifically, at the start of the
search, we take a snapshot of every N TSCCs until we obtain CFHP.
Then we revert the execution to the last snapshot and start taking
a snapshot of every N/2 TSCCs. We repeat this process until we
obtain CFHP by executing one single TSCC. This algorithm ensures
at least one snapshot is taken between T1-T3. Since T2-T3 is a time
frame less than the time it takes to finish one system call (TSC), it
is likely to obtain snapshots between T1-T2. As demonstrated in
Section 7.2, the algorithm succeeds for all 22 exploit samples.

6.2 Identifying User-controllable Data
In this step, we mutate all potential userspace inputs (i.e., registers
and user memory) that 1) flow into the kernel space and 2) are not
relevant in obtaining CFHP. In other words, we want to identify all
userspace inputs that can be used for data spillage.

Notice that the VM snapshot taken from the previous step en-
sures the deterministic execution of TSC: it will always lead to
CFHP without external intervention. We mutate all user space in-
puts word by word (because they are used for placing gadgets)
directly in a fresh VM state (by rewinding VM states using the
snapshot) and continue the execution. If the execution still leads
to CFHP, the word can be used for data spillage since it does not
affect CFHP. The mutation is performed by directly modifying user
space registers and hooking kernel functions that consume user
space data, namely, copy_from_user and get_user.

Then we analyze the provenance of all data spillage for payload
generation in the next step. Specifically, we taint the whole kernel
stack and CFHP-irrelevant userspace input with different special
values in the VM state and then continue its execution to CFHP.
By analyzing the tainted data on the kernel stack when CFHP is
obtained, we can learn the amount of data spillage we control and
their provenance.

6.3 ROP Chain Generation
In this step, we generate a ROP chain based on the user-controlled
data on the kernel stack. There are two challenges in this task. First,
the user-controlled data scatter over the kernel stack because they
are spilled on the stack through various methods (Section 4.2), as
shown in Figure 4. Second, there are implicit constraints on the
user-controlled data because several data spillages may come from
the same source (e.g. rbx can lead to both Saved Registers and
Calling Convention spillages), and they will be of the same value
on the kernel stack.

ROP chain generation on discrete controlled regions is an open
challenge: all existing automatic ROP chain generation solutions
assume consecutive data control on the stack [2, 9, 26, 57, 58, 69].

CVE Version
Trigger

P.R. C.C V.D. U.M. Total
Total Original Technique RetSpill

System Call w/o U.M. Still Applicable Automated
2010-2959 4.15 ioctl 9 7 0 10 22 12 ✗ ✓

2016-0728 4.15 keyctl 4 3 0 0 7 7 ✗ ✓

2016-4557 4.15 close 5 3 0 0 8 8 - ✓

2016-6187 4.15 read 3 6 0 2 11 9 ✓ ✓

2017-2636 4.15 recvfrom 4 8 0 14 26 12 ✗ ✓

2017-6074 4.15 recvfrom 4 8 0 14 26 12 ✗ ✓

2017-7184 4.15 read 3 6 0 2 11 9 ✓ ✓

2017-7308 4.15 lseek 4 5 0 0 9 9 ✗ ✓

2017-7533 4.15 write 3 6 0 3 12 9 - ✓

2017-8824 4.15 getsockopt 2 5 0 2 9 7 ✗ ✓

2017-10661 4.15 clock_adjtime 4 7 24 1 36 35 ✗ ✓

2017-11176 4.15 setsockopt 3 7 0 0 10 10 ✗ ✓

2018-6555 4.15 getsockopt 2 6 0 1 9 8 ✗ ✓

2021-3490 5.11.0 prctl 12 4 0 3 19 16 - ✓

2021-3492 5.4.94 read 9 0 0 0 9 9 ✓ ✓

2021-4154 5.4.120 read 9 0 0 6 15 9 ✓ ✓

2021-27365 5.11.0 sendmsg 10 0 1 32 43 11 ✗ ✗∗

2021-43267 5.11.0 ioctl 11 1 0 15 27 12 - ✓

2022-0185 5.4.120 read 9 0 0 6 15 9 ✓ ✓

2022-1786 5.10.90 execve 9 0 0 0 9 9 - ✓

2022-25636 5.11.0 read 9 0 0 0 9 9 ✓ ✗

2022-29581 5.4.170 ioctl 10 3 0 9 22 13 ✓ ✓

AVERAGE 6.1 3.9 1.1 5.5 16.5 11.1

Table 4: Data spillage is prevalent in system calls. The abundance of data spillage allows 20 out of 22 proof-of-concept programs
that manifest CFHP to be semi-automatically turned into full privilege escalation exploits. Among the 20 success samples,
five do not have public end-to-end CFH exploits. For ten samples, the techniques used in the original exploits no longer work
with the presence of modern protections, but IGNI successfully make them work again automatically using RetSpill. Detailed
information on the original techniques is shown in Table 7 in Appendix. Preserved Registers (P.R.), Calling Convention (C.C.),
Valid Data (V.D.), and Uninitialized Memory (U.M.), the original exploit does not provide CFHP or there is no public end-to-end
exploit (-). * RetSpill works on CVE-2021-27365 with manual modification.

N1

N2

Exit

N3

N4

N1

commit_creds

rdi=init_cred

N4

Uncontrolled DataData Spill

Exit

StartStart Start

N4

N3

N2

N1

Exit

Figure 4: IGNI turns the discrete ROP chain generation prob-
lem into a graph search problem. Each node in the graph is a
controlled data spill and each edge is a bridging gadget that
can perform the control flow transfer.

The difficulty lies in how to connect multiple controlled areas while
maintaining CFH.

To tackle this problem, we propose to use graph search to solve
the controlled area connection problem and find potential ROP
chain candidates, then use symbolic execution to verify ROP chains,
similar to BOPC [28]. Notice that the longer the needed ROP chain
payload is, the more implicit data constraints will be added to the

graph. Thus, our approach may not scale to long ROP chains. In
this work, we only focus on executing commit_creds(init_cred)
and returning back to user space gracefully to demonstrate RetSpill.

We first fit independently-generated (using angrop[2]) ROP
chain pieces into controlled memory and stitch them together using
stack-shifting gadgets (e.g., add rsp, 0x10; ret). For example,
in Figure 4, we fit | pop rdi; ret | init_cred | into N3 first.
Then the stitching algorithm turns each ROP chain piece and other
controlled gadgets into nodes in a Directed Acyclic Graph. Two
nodes are connected if there is a stack-shifting gadget that trans-
fers the stack control from one node to the other. The start node
is a special node that does not represent any controlled memory.
Instead, it represents the initial CFHP. An exit node is a Preserved
Register data spillage. We explain its significance later. At this stage,
each path in the graph represents an execution flow that starts from
the initial CFHP provided by the given PoC program (start node),
traverses all ROP chain pieces, and ends with a Preserved Register
spillage node. So far, the algorithm does not guarantee a successful
ROP execution because of implicit data constraints. For example, if
a pop rdi; add rsp, 0x10; ret stack-shifting gadget is chosen
after setting rdi to init_cred, the ROP chain will fail. But the
algorithm reduces the amount of potential ROP chain candidates
because it solves the controlled area connection problem. We then
use symbolic execution (i.e., angr) to verify the execution results
of the chains to select a working chain that can escalate privilege
and reach a controlled Preserved Register spillage.

Every Preserved Register data spillage can end ROP chains in ker-
nel space gracefully. This is because preserved registers are stored
in pt_regs and KPTI trampoline [38] is a code snippet that pops all
the pt_regs and returns back to user space. By carefully calculat-
ing offsets in KPTI trampoline, we can use one Preserved Register
gadget to resume the normal execution of the KPTI trampoline
and return back to user space gracefully. For example, suppose the
data in pt_regs is r10|r9|r8 and the trampoline needs to restore
the registers by pop r10; pop r9; pop r8. If we set r10 (part of
our ROP chain) to the address of pop r9; pop r8;, when r10 is
consumed by our ROP chain, the stack content will become r9|r8
and the PC points to pop r9; pop r8, which resumes the normal
execution flow of the KPTI trampoline and can return back to user
space gracefully.

As a result, our algorithm ensures a payload that starts from
the initial CFHP, runs the privilege escalation payload, and returns
back to user space gracefully.

7 EVALUATION
In this section, we evaluate the RetSpill attack by answering three
questions as follows:

• How feasible is the RetSpill attackwhen applied to real-world
vulnerabilities?

• How effective is the semi-automatic RetSpill attack applied
to real-world vulnerabilities?

• How effective is RetSpill in bypassing existing Linux kernel
protections?

All the experiment artifacts are open-source.

7.1 Data Spillage Feasibility
We evaluate RetSpill’s applicability by measuring the amount of
data on the kernel stack that is fully controllable by attackers when a
triggering system call is invoked. We only include fully controllable
gadgets, because partial control on stack data (e.g., 32-bit control on
a 64-bit machine) does not necessarily enable attackers to execute
gadgets, thus it does not reflect the applicability of RetSpill. The
numbers are obtained by using the taint analysis described in §6.2.
Dataset. We create a dataset consisting of 22 proof-of-concept ex-
ploits that provide CFHP for evaluating the effectiveness of RetSpill.
It includes 13 exploits from previous work [75] and nine publicly
accessible exploits. In total, we exclude 4 exploits from the dataset
of previous work. CFHPs in 2 of 4 excluded samples are not trigger-
able in system calls, applying RetSpill to those 2 exploits requires
significant engineering effort, thus we exclude them. The other 2
excluded samples only work when the SMAP protection is disabled,
which requires a weaker threat model than our paper’s. As a result,
we exclude them from our dataset.

In the dataset, we enable all the protections compatible with
the kernels, namely, SMEP, SMAP, KPTI, NX-physmap, CR pinning,
and STACK CANARY. We do not enable STATIC_USERMODE_HELPER
because it is not compatible with kernels used in the dataset. FG-
KASLR, RKP, and PT-Rand are not enabled because they are not in
the Linux kernel main tree, thus not in our kernel source code.

As shown in Table 4, there is a considerable amount of user-
controllable data on the kernel stack when CFHP is obtained in the

CVE P.R. C.C. V.D. U.M. Total

2010-2959 3 6 29 75 113
2016-4557 3 6 29 75 113
2017-7308 3 6 29 75 113

Table 5: The number of fully controllable gadgets by trig-
ging payloads using the poll system call. Preserved Regis-
ters (P.R.), Calling Convention (C.C.), Valid Data (V.D.), and
Uninitialized Memory (U.M.).

triggering system calls. On average, when attackers obtain CFHP,
there are 16.5 gadgets readily on kernel stack, which is more than
enough for carrying out privilege escalation.

Notice that in the same exploit with the same payload, using
different triggering system calls to obtain CFHP will lead to a differ-
ent exploitation scenario because of the difference in stack layouts.
Thus, by carefully choosing triggering system calls, the amount of
fully controlled data on the kernel stack can be greatly increased.
We demonstrate this by using poll system call to trigger payloads
for a subset of the exploits, the result is shown in Table 5.

7.2 Semi-Automation Effectiveness
We evaluate RetSpill’s ability to semi-automatically turn proof-of-
concept programs into privilege escalation exploits. We contacted
the authors of targeted stack spray [45] and leak-kptr [8], but failed
to port their prototypes to work against the modern Linux kernel.
Thus, without a method to automatically perform targeted stack
spray, we only use Valid Data, Preserved Registers, and Calling
Conventions for data spillage in this evaluation. We tested the
refined IGNI on the same set of real-world vulnerabilities built for
the data spillage feasibility experiment (§7.1). As shown in Table 4,
our prototype can generate end-to-end exploits for 20 out of the 22
samples even without using Uninitialized Memory for data spillage.
This result demonstrates that RetSpill can be automated, and is thus
that much more of a dangerous exploitation technique.

We further investigated and determined that CVE-2021-27364
is susceptible to RetSpill attack. Our prototype fails to automati-
cally generate an exploit for it because of the lack of methods to
perform targeted stack spray automatically. We successfully create
an end-to-end exploit for CVE-2021-27364 using RetSpill by per-
forming the targeted stack spray, which takes advantage of spilled
data from uninitialized memory, manually. Our system fails on
CVE-2022-25636 because of the lack of a specific bridging gadget
to transfer control flow into a controlled region. In other words,
RetSpill fails on this vulnerability for this specific kernel build. In
our experiment, this kernel is compiled with the default configura-
tion plus the aforementioned protections, and thus does not have
much reusable code. However, in real-world kernel builds compiled
with many additional functionalities enabled, we may be able to
find the missing bridging gadget in the larger reusable code region
and make RetSpill possible.

7.3 Protection Bypass
Due to the fact that RetSpill provides a probabilistic success

rate in bypassing the most strict randomized-based protections, to

1 long vuln_ioctl(...)
2 {
3 switch(cmd) {
4 case CMD_VULN:
5 obj = kzalloc(sizeof(vuln_obj_t), GFP_KERNEL);
6 copy_from_user(obj, arg, sizeof(obj));
7 case CMD_TRIGGER:
8 obj->func();
9 }
10 }

Listing 3: The simplified code snippet of the contrived vul-
nerable kernel module.

accurately measure its success rate in bypassing protections, we
use a synthetic vulnerability to guarantee CFHP. More specifically,
we write a vulnerable kernel module that contains a contrived
vulnerability that provides CFHP to simulate real-world exploit
scenarios. We do not use real-world exploits for this evaluation
because the unreliability of real-world kernel exploits in providing
CFHP [75] will affect our measurement of RetSpill’s effectiveness.
The gist of the vulnerable kernel module is shown in Listing 3.
RANDKSTACK. We compile a Linux kernel on x86_64 architec-
ture with the default configuration and enable RANDSTACK. Since
RANDKSTACK adds a random offset on kernel stack, which can
only mitigate Preserved Registers and Uninitialized Memory data
spillage methods, in our RetSpill exploit, we only use Preserved
Registers to put user data on the kernel stack to evaluate this mit-
igation objectively. Our RetSpill exploit aims to obtain privilege
escalation using the commit_creds(init_cred) payload.

We perform 5000 trials each on the kernel with panic_on_oops
on and off. In each trial, we insert the vulnerable kernel module
and then repetitively run the exploit until it succeeds or crashes
the kernel, following the previous work’s method [75]. The result
shows that RetSpill can achieve 100% success rate on systems with
panic_on_oops off. Even with panic_on_oops on, the RetSpill ex-
ploit can still achieve 25.44% success rate, which is non-negligible.
Since panic_on_oops is off by default on most Linux distributions
as shown in Table 3, this suggests that even with RANDKSTACK on,
RetSpill can achieve 100% success rate on most Linux distributions.

Notice that the 25.44% is achieved when the attacker only relies
on Preserved Registers or Uninitialized Memory for data spillage. If
they use Valid Data or Calling Convention for data spillage, this mit-
igation cannot provide any protection. In other words, if attackers
can use Valid Data and Calling Convention to perform data spillage
(which is common according to Table 4), they can still achieve 100%
success rate despite the presence of RANDKSTACK.
KCFI/IBT. We simulate a vulnerability that grants PC-control in
kernels compiledwith CFI schemes bymodifying the vulnerable ker-
nel module used in the previous setup. More specifically, the func-
tion pointer is directly invoked using __x86_indirect_thunk_rdi
that transforms forward-edge control-flow transition to backward-
edge control-flow transition, which is not protected by the CFI
schemes. This setting is realistic, as discussed in §5.

We successfully performed CFH attacks and obtained privilege
escalation on kernels compiled with KCFI and IBT using RetSpill.
The success is because KCFI and IBT only protect forward-edge
control flow. Once PC-control is obtained, RetSpill does not rely
on the ability to hijack forward-edge control flow again because
one initial CFHP is enough for using data spilled on the kernel

…
Saved %rip
Saved %rbp

Stack Canary

User Data

…
%rsp

(a) Unhardened Stack Frame (b) Hardened Stack Frame

%rsp

…
Saved %rip
Saved %rbp

Stack Canary

User Data

Random Offset

…

Figure 5: Unhardened and Hardened Stack Frames.

stack to carry out malicious payload through ROP. We demonstrate
RetSpill’s ability to bypass KCFI/IBT with experiments 3.
FG-KASLR. We contacted the authors of FG-KASLR and ob-
tained its latest source code. Similar to the setup in RANDKSTACK,
we compile the kernel with default configuration with FG-KASLR
enabled. We write a tool to parse the kernel’s FG-KASLR-related
metadata and extract a position-invariant region of 4MB from the
kernel image we build. As mentioned in §5, this region consists of
executable code that is not within the boundary of any functions
(e.g., manually written assembly stubs). In total, we obtained 42631
unique gadgets from the position-invariant region, which is more
than enough for dynamically resolving kernel function address. We
succeed in using RetSpill to perform privileged escalation against
the kernel compiled with FG-KASLR using the vulnerability in the
contrived kernel module.
Case study: Breaking Security Boundary. Wedemonstrate the
ability of RetSpill to break the security boundary between user space
and kernel space using a real-world example. We implement an end-
to-end proof-of-concept exploit for CVE-2022-1786 that performs
Arbitrary Read/Write in kernel memory and Arbitrary Function
Call in one single exploit by only changing the payload on the stack.
Besides the individual primitives, this experiment also confirms
RetSpill’s ability to provide unlimited Arbitrary Read/Write/Exec
primitive. In our analysis, Independent ROP Chain proves to be vital
in obtaining CFHP multiple times. This is because, in this specific
exploit, CFHP is obtained after the exploit thread acquires a lock.
Since the control flow returns back to user space without releasing
the lock, if we try to obtain CFHP again in the same thread, the
exploit will stop indefinitely waiting for the lock to be released.
Independent ROP Chain provided by RetSpill avoids the locking
issue because each CFHP is obtained in a different thread.

8 DEFENSE
In this section, we explore plausible protections against RetSpill
besides CFI+Shadow Stack, which is not ready yet and requires
special hardware. To mitigate this exploitation technique, the key
is to eliminate all data spillage on the kernel stack.
Preserved Register. RANDKSTACK is the only existing protec-
tion that mitigates Preserved Register data spillage. It comes with
near-zero performance overhead [17] but offers probabilistic pro-
tection. In our experiment, exploits can still have a 25.44% chance
of succeeding against kernels with this protection. Moreover, this
3https://github.com/sefcom/RetSpill/tree/main/experiments/kcfi_eval

https://github.com/sefcom/RetSpill/tree/main/experiments/kcfi_eval

protection should be coupled with panic_on_oops, or it can be
fully bypassed (§7.3). To completely mitigate this data spillage, we
suggest preserving user space registers elsewhere instead of on the
kernel stack. For example, the registers can be saved in the asso-
ciated task’s task_struct data structure. This way, even if CFHP
is obtained by attackers, user space registers will not be directly
accessible on kernel stacks to facilitate further exploitation.
Uninitialized Memory. For Uninitialized Memory data spillage,
all STACKLEAK, STRUCTLEAK, INITSTACK, and RANDKSTACK
can provide different levels of protection. STACKLEAK clears the
kernel stack after each system call, which ensures zero usable Unini-
tialized Memory data spillage when CFHP is obtained. However,
STACKLEAK has an average overhead of more than 40% [44]. INIT-
STACK and STRUCTLEAK use compilers’ pattern initialization
feature to initialize stack variables, which also ensures no Unini-
tialized Memory data spillage while having only a performance
overhead of 2.7%-4.5% [72]. As mentioned above, RANDKSTACK
has near-zero performance overhead but only provides probabilistic
protection. Considering protection and performance, we suggest
enabling INITSTACK or STRUCTLEAK to avoid Uninitialized Mem-
ory data spillage on kernel stack.
Calling Convention and Valid Data. The latest version of
the Linux kernel has deployed a protection that clears user space
registers that are not part of the ABI in the system call entry stub.
As shown in Table 4, new kernel builds have significantly less data
spillage caused by Calling Convention compared with old kernel
builds because of this protection. However, data spillage caused by
Calling Convention is still not eliminated.

Data spillage caused by Valid Data and Calling Convention is
part of the design, and thus cannot be mitigated by existing protec-
tions in the Linux kernel. However, they are enough for successfully
launching RetSpill to achieve full system compromise. We demon-
strate it by successfully exploiting CVE-2016-4557 with RetSpill
only using Valid Data and Calling Convention spillage. To fill the
gap, we developed a protection to mitigate this data spillage. As
shown in Figure 5, our protection inserts a random offset at the bot-
tom of each stack frame. To prevent the random offset region from
becoming the source of Uninitialized Memory data spillage, we
clear the region right after the insertion. As a consequence, when
CFHP is obtained by attackers, they will not be able to reuse user
data directly without guessing the random offset, which drastically
reduces exploit reliability.

Denote the average call-stack depth as 𝐷 , the entropy of the
proposed protection is 5+ 𝑙𝑜𝑔(𝐷) bits, which is slightly higher than
RANDKSTACK(5 bits). More importantly, the protection prevents
attackers from accessing all data spillage, whereas RANDKSTACK
only prevents Preserved Registers and Uninitialized Memory.

Due to its lightweight nature, the proposed protection only intro-
duces an average performance overhead of 0.61% as evaluated on
benchmarks from LMBench and Phoronix. The detailed evaluation
result can be found in Table 6.

9 DISCUSSION
Automatic Exploit Context Analysis. In this work, we only
analyze RetSpill under limited exploit contexts. As mentioned in
§7.1, different system calls can be used to trigger the payload on

Benchmark Vanilla Hardened Overhead
Phoronix

Apache (Reqs/s) 149470.35 150295.67 0.55%
PHPBench (Score) 830189 840718 1.27%
PyBench (ms) 889 885 0.45%

OpenSSL-SHA256 (byte/s) 20984220257 20797618197 -0.89%
OpenSSL-SHA512 (byte/s) 6859393693 6812764710 -0.68%
OpenSSL-RSA4096 (sign/s) 3119.7 3105.9 -0.44%
OpenSSL-RSA4096 (verify/s) 204263.3 203177.1 -0.53%

LMBench
Context Switch (ms) 2.036428571 2.047 -0.52%

UDP (ms) 7.3116 7.4854 -2.32%
TCP (ms) 9.2525 9.3546 -1.09%

10k File Create (ms) 10.99 10.89 0.92%
10k File Delete (ms) 5.89229 5.71896 3.03%

pipe (MB/s) 3648.6 3587.8 -1.67%
AF Unix (MB/s) 8968.9 8712.5 -2.86%
TCP (MB/s) 8081.6 7964.8 -1.45%

mmap Reread (MB/s) 18.61 17.95 -3.55%

Table 6: Performance overhead evaluation of the proposed
defense on Phoronix and LMBench.

the heap, which create different exploit contexts. To fully evaluate
the severity of RetSpill, an automatic solution is needed to explore
all possible exploit contexts for each vulnerability. One such work
is FUZE [71], which combines fuzzing and symbolic execution to
facilitate exploit generation automatically. We can potentially use
its fuzzing and symbolic execution engines to explore different
exploit contexts automatically. We leave the integration with FUZE
for automatic exploit context analysis as future work.
Uninitialized Memory Spillage Evaluation. In our current
evaluation for IGNI, we do not include data spillage caused by unini-
tialized memory. This is because we lack a way to automatically
and deterministically control uninitialized memory on the kernel
stack. The most relevant research lately on this topic are targeted
stack spray [45] and leak-kptr [8]. We contacted the authors but
failed to port their prototypes to the modern Linux kernel because
of its rapid development in the past few years. Since the evaluation
requires a new automatic approach to perform stack spray, which
is out of the scope of this work, we leave it as future work.
Fine-Grained Randomization Protections. Existing such pro-
tections in the Linux kernel (e.g., FG-KASLR [34] and kR^X [48])
cannot randomize all kernel executable code, which leaves the ker-
nel vulnerable to RetSpill. Even with perfect fine-grained random-
ization protection, attackers can still use speculative probing [21]
or an arbitrary read primitive to disclose usable ROP gadgets and
launch RetSpill in JIT-ROP [59] style. Thus, we believe fine-grained
randomization may not be a good solution to mitigate RetSpill.
Stealthy Rootkit. Primitives provided by RetSpill allow attack-
ers to reliably program the kernel from user space. This opens up
the possibility of rootkits that manipulate the kernel without esca-
lating its privilege. As a consequence, this hypothetical rootkit can
bypass intrusion detection techniques based on detecting suspicious
privilege escalation behaviors [27, 56]. Worse still, its every action
involves only the triggering system call, which means malicious

logic can be executed in kernel space while only leaving a trace of
seemingly benign system calls such as close.
Applicability to Other Systems. RetSpill is not specific to
Linux. Any system that involves exchanging data between a trusted
entity and an untrusted one needs to avoid untrusted data spillage
on the trusted stacks. For example, other operating systems or
hypervisors are potentially susceptible to RetSpill attack. We leave
the verification and severity evaluation of RetSpill on other systems
as future work.

10 RELATEDWORK
Exploring Memory Corruption Capability. Memory corrup-
tion capability is obtained after a vulnerability is triggered. In order
to reliably trigger race condition bugs, Lee et al. [39] use interrupts
to extend race windows for winning races and eventually achieve
memory corruption capability. FUZE [71] explores different use
sites of UAF vulnerabilities with under-context fuzzing. GREBE [41]
proposes an object-driven fuzzing technique to trigger vulnerabili-
ties in different contexts and explore different memory corruption
capabilities. Syzscope [77] symbolizes kernel memory and extracts
memory corruption capabilities through symbolic execution.
Obtaining Exploitation Primitive. With the memory corrup-
tion capability in hand, researchers propose various techniques
to obtain exploitation primitives. Cho et al. [8] utilizes eBPF to
achieve pointer leak from uninitialized stack variables. Lu et al. [45]
introduce targeted stack spray techniques to exploit use-before-
initialization vulnerabilities. There are also many research works on
kernel heap exploitation. SLAKE [7] introduces different techniques
to manipulate heap memory layout. With the help of elastic ob-
jects, ELOISE [6] proposes a general method to obtain information
leak primitive from an overwrite capability. KOOBE [5] explores
different exploit primitives from heap out-of-bound write capabil-
ity. KHeaps [75] systematically studies the reliability problem in
kernel exploitation and proposes a new stabilization technique. In
order to prevent heap exploitation, many defenses are proposed.
AUTOSLAB [40] proposes to isolate different types of objects into
different slab caches and thus mitigates memory layout manipula-
tion. Hardened Usercopy [11] is introduced to the Linux kernel to
prevent out-of-bound access exploitation.
Escalating Privilege. Privilege escalation could be done through
control flow hijacking (CFH) attacks. Originally, attackers could
directly hijack the control flow to userspace [32]. The introduc-
tion of kernel space and user space isolation (e.g. KPTI [25, 64],
SMEP [12]/SMAP [47]) mitigates such attacks. With the presence
of isolation, attackers have to inject payload into kernel space.
ret2dir [31] breaks this isolation with physmap, which is mapped
in a predictable region in kernel space. To mitigate CFH attacks,
KASLR [10] and KCFI [16, 20, 36, 73] are proposed. Specifically,
KASLR randomizes kernel address space layout, making addresses
of existing code unpredictable and thus downgrading the reliability
of code reuse attacks. Recently, KASLR has been further extended
as FG-KASLR [34], which randomizes address space layout at func-
tion granularity. CFI preserves the control-flow integrity to pre-
vent CFH attacks. There are different implementations of CFI in
the Linux kernel, including software-based [20, 22] and hardware-
assisted [16, 36, 73]. Other than CFH attacks, data-only attacks are

also capable of escalating privilege. Through an overwriting primi-
tive, attackers could tamper the credentials of the exploit process
to escalate privilege [4]. DirtyCred [42] demonstrates privileged
escalation by replacing unprivileged credentials with privileged cre-
dentials. To prevent data-only attacks, xMP [52] protects sensitive
data utilizing hardware virtualization techniques. PrivGuard [68]
creates duplicate memory to ensure the modifications to sensitive
data are legitimate.

Our work systematically studies the data spillage problem on
kernel stack and discovers a novel and powerful attack: RetSpill.
We thoroughly evaluate RetSpill and show that it can be automated
with our prototype, IGNI.

RetSpill could bypass FG-KASLR [34] which previous research –
KEPLER [70] is not capable of. In addition, compared to KEPLER
and conventional ROP attacks [26, 69], RetSpill has no requirement
of register control and heap control, which significantly simplifies
the process of launching attacks. We also do not assume the infor-
mation of the base of physmap as KEPLER. Furthermore, RetSpill
enables unlimited CFHP without changing the payload on the heap,
which introduces no degradation to exploit reliability for further
exploitation. This feature of RetSpill makes it a stable exploitation
technique, which other "single-shot" exploitation techniques, such
as KEPLER, are unable to achieve.

11 CONCLUSION
We show that untrusted user data on kernel stack are threats to
Linux kernel security. In this research, we discover RetSpill, a dan-
gerous Linux kernel exploitation technique that requires minimal
exploit primitives. Provided with CFHP, RetSpill can utilize seem-
ingly harmless user space data on kernel stack to break the bound-
ary between user space and kernel space despite the presence of
all commonly deployed protections in Linux. We thoroughly study
the technique and show that it is applicable in 21 out of 22 public
exploits. Worse still, we demonstrate RetSpill can be automated,
which makes it even more dangerous. Our proof-of-concept proto-
type, IGNI, semi-automatically turns 20 out of 22 public exploits
that manifest CFHP into full privilege escalation exploits. Finally,
we explore potential protections to minimize the impact of RetSpill.

12 ACKNOWLEDGEMENT
Wewould like to thank the anonymous reviewers for their insightful
feedback.

This material was supported by 2023 Google PhD Fellowship
Program, NSF CNS-2000792, and grants from Defense Advanced Re-
search Projects Agency (DARPA) under contracts HR001118C0060,
FA8750-19C-0003, and N66001-22-C-4026.

REFERENCES
[1] sefcom/kheaps. https://github.com/sefcom/KHeaps/blob/master/exploit_env/

CVEs/CVE-2017-7533/poc/poc_cfh_combo.c.
[2] angr team. angr/angrop. https://github.com/angr/angrop.
[3] Tyler Bletsch, Xuxian Jiang, Vince W Freeh, and Zhenkai Liang. Jump-oriented

programming: a new class of code-reuse attack. In Proceedings of the 6th ACM
symposium on information, computer and communications security, pages 30–40,
2011.

[4] Hao Chen, David Wagner, and Drew Dean. Setuid demystified. In 11th USENIX
Security Symposium (USENIX Security 02), 2002.

[5] Weiteng Chen, Xiaochen Zou, Guoren Li, and Zhiyun Qian. {KOOBE}: Towards
facilitating exploit generation of kernel {Out-Of-Bounds} write vulnerabilities.
In 29th USENIX Security Symposium (USENIX Security 20), pages 1093–1110, 2020.

[6] Yueqi Chen, Zhenpeng Lin, and Xinyu Xing. A systematic study of elastic objects
in kernel exploitation. In Proceedings of the 2020 ACM SIGSAC Conference on
Computer and Communications Security, pages 1165–1184, 2020.

[7] Yueqi Chen and Xinyu Xing. Slake: Facilitating slab manipulation for exploiting
vulnerabilities in the linux kernel. In Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, pages 1707–1722, 2019.

[8] Haehyun Cho, Jinbum Park, Joonwon Kang, Tiffany Bao, Ruoyu Wang, Yan
Shoshitaishvili, Adam Doupé, and Gail-Joon Ahn. Exploiting uses of uninitialized
stack variables in linux kernels to leak kernel pointers. In 14th USENIX Workshop
on Offensive Technologies (WOOT 20), 2020.

[9] Tobias Cloosters, David Paaßen, Jianqiang Wang, Oussama Draissi, Patrick
Jauernig, Emmanuel Stapf, Lucas Davi, and Ahmad-Reza Sadeghi. Riscyrop:
Automated return-oriented programming attacks on risc-v and arm64. In Pro-
ceedings of the 25th International Symposium on Research in Attacks, Intrusions
and Defenses, pages 30–42, 2022.

[10] Kees Cook. Kernel address space layout randomization. https://lwn.net/Articles/
546035/, 2013.

[11] Kees Cook. Hardened usercopy. https://lwn.net/Articles/693745/, 2016.
[12] Jonathan Corbet. Supervisor mode access prevention. https://lwn.net/Articles/

517475/, 2012.
[13] Dino Dai Zovi. Practical return-oriented programming. Source boston, 2010.
[14] Lucas Davi, David Gens, Christopher Liebchen, and Ahmad-Reza Sadeghi. Pt-

rand: Practical mitigation of data-only attacks against page tables. In NDSS,
2017.

[15] Vincent Dehors. Exploitation of a double free vulnerability in ubuntu shiftfs
driver. https://www.synacktiv.com/en/publications/exploitation-of-a-double-
free-vulnerability-in-ubuntu-shiftfs-driver-cve-2021-3492.html, 2021.

[16] Rémi Denis-Courmont, Hans Liljestrand, Carlos Chinea, and Jan-Erik Ekberg.
Camouflage: Hardware-assisted cfi for the arm linux kernel. In 2020 57th
ACM/IEEE Design Automation Conference (DAC), pages 1–6. IEEE, 2020.

[17] Marco Elver. stack: Introduce config_randomize_kstack_offset. https:
//lore.kernel.org/lkml/YfQ54x8zglPT%2FYnL@dev-arch.archlinux-ax161/t/#u,
2022.

[18] Nicolas FABRETTI. Cve-2017-11176: A step-by-step linux kernel exploitation.
https://blog.lexfo.fr/cve-2017-11176-linux-kernel-exploitation-part4.html.

[19] FizzBuzz101. Will’s root: Cve-2022-0185. https://www.willsroot.io/2022/01/cve-
2022-0185.html, 2022.

[20] Xinyang Ge, Nirupama Talele, Mathias Payer, and Trent Jaeger. Fine-grained
control-flow integrity for kernel software. In 2016 IEEE European Symposium on
Security and Privacy (EuroS&P), pages 179–194. IEEE, 2016.

[21] Enes Göktas, Kaveh Razavi, Georgios Portokalidis, Herbert Bos, and Cristiano
Giuffrida. Speculative probing: Hacking blind in the spectre era. In Proceedings
of the 2020 ACM SIGSAC Conference on Computer and Communications Security,
pages 1871–1885, 2020.

[22] Google. Kernel control flow integrity. https://source.android.com/docs/security/
test/kcfi.

[23] Google. Kernel exploit recipes notebook - google docs. https://docs.google.com/
document/d/1a9uUAISBzw3ur1aLQqKc5JOQLaJYiOP5pe_B4xCT1KA/edit#.

[24] Grimm. Notquite0dayfriday/2021.03.12-linux-iscsi at trunk · grimm-
co/notquite0dayfriday. https://github.com/grimm-co/NotQuite0DayFriday/tree/
trunk/2021.03.12-linux-iscsi.

[25] Daniel Gruss, Moritz Lipp, Michael Schwarz, Richard Fellner, ClémentineMaurice,
and Stefan Mangard. Kaslr is dead: long live kaslr. In International Symposium
on Engineering Secure Software and Systems, pages 161–176. Springer, 2017.

[26] Garrett Gu and Hovav Shacham. Return-oriented programming in risc-v. arXiv
preprint arXiv:2007.14995, 2020.

[27] Isovalent. Detecting a container escape with cilium and ebpf - isovalent. https:
//isovalent.com/blog/post/2021-11-container-escape/, 2021.

[28] Kyriakos K Ispoglou, Bader AlBassam, Trent Jaeger, and Mathias Payer. Block
oriented programming: Automating data-only attacks. In Proceedings of the
2018 ACM SIGSAC Conference on Computer and Communications Security, pages
1868–1882, 2018.

[29] David Bouman Jayden Rivers. Cve-2022-29582: An io_uring vulnerability. https:
//ruia-ruia.github.io/2022/08/05/CVE-2022-29582-io-uring/, 2022.

[30] Xingyu Jin, Christian Resell, Clement Lecigne, and Neal Richard. Monitor-
ing surveillance vendors: A deep dive into in-the-wild android full chains
in 2021. https://i.blackhat.com/USA-22/Wednesday/US-22-Jin-Monitoring-
Surveillance-Vendors.pdf, 2022.

[31] Vasileios P Kemerlis, Michalis Polychronakis, and Angelos D Keromytis. ret2dir:
Rethinking kernel isolation. In 23rd USENIX Security Symposium (USENIX Security
14), pages 957–972, 2014.

[32] Vasileios P Kemerlis, Georgios Portokalidis, and Angelos D Keromytis. {kGuard}:
Lightweight kernel protection against {Return-to-User} attacks. In 21st USENIX
Security Symposium (USENIX Security 12), pages 459–474, 2012.

[33] Andrey Konovalov. Project zero: Exploiting the linux kernel via packet sock-
ets. https://googleprojectzero.blogspot.com/2017/05/exploiting-linux-kernel-
via-packet.html.

[34] Alexander Lobakin Kristen Carlson Accardi. Function granular kaslr [lwn.net].
https://lwn.net/Articles/832434/, 2020.

[35] Greg Kroah-Hartman. Introduce static_usermodehelper to medi-
ate call_usermodehelper() - patchwork. https://lore.kernel.org/all/
20170116165044.GC29693@kroah.com/, 2017.

[36] Donghyun Kwon, Jiwon Seo, Sehyun Baek, Giyeol Kim, Sunwoo Ahn, and Yun-
heung Paek. Vm-cfi: Control-flow integrity for virtual machine kernel using
intel pt. In International Conference on Computational Science and Its Applications,
pages 127–137. Springer, 2018.

[37] Dang Le. Learning linux kernel exploitation - part 1. https://lkmidas.github.io/
posts/20210123-linux-kernel-pwn-part-1/#the-simplest-exploit---ret2usr.

[38] Dang Le. Learning linux kernel exploitation - part 3 - midas blog. https://
lkmidas.github.io/posts/20210205-linux-kernel-pwn-part-3/, 2021.

[39] Yoochan Lee, Changwoo Min, and Byoungyoung Lee. {ExpRace}: Exploiting
kernel races through raising interrupts. In 30th USENIX Security Symposium
(USENIX Security 21), pages 2363–2380, 2021.

[40] Zhenpeng Lin. How autoslab changes the memory unsafety game. https://
grsecurity.net/how_autoslab_changes_the_memory_unsafety_game, 2021.

[41] Zhenpeng Lin, Yueqi Chen, Yuhang Wu, Dongliang Mu, Chensheng Yu, Xinyu
Xing, and Kang Li. GREBE: Unveiling Exploitation Potential for Linux Kernel
Bugs. In 2022 IEEE Symposium on Security and Privacy (S&P), pages 2078–2095.
IEEE, 2022.

[42] Zhenpeng Lin, Yuhang Wu, and Xinyu Xing. Dirtycred: Escalating privilege in
linux kernel. In Proceedings of the 2022 ACM SIGSAC Conference on Computer
and Communications Security, 2022.

[43] Linxz. Pax - structleak. https://linxz.tech/post/compilers/2021-10-10-structleak/,
2021.

[44] Kangjie Lu, Chengyu Song, Taesoo Kim, andWenke Lee. Unisan: Proactive kernel
memory initialization to eliminate data leakages. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, pages 920–932,
2016.

[45] Kangjie Lu, Marie-Therese Walter, David Pfaff, Stefan Nümberger, Wenke Lee,
and Michael Backes. Unleashing use-before-initialization vulnerabilities in the
linux kernel using targeted stack spraying. In NDSS, 2017.

[46] Andy Nguyen. Cve-2021-22555: Turning \x00\x00 into 10000$ | security-
research. https://google.github.io/security-research/pocs/linux/cve-2021-22555/
writeup.html, 2021.

[47] OSDev.org. Supervisor memory protection - osdev wiki. https://wiki.osdev.org/
Supervisor_Memory_Protection.

[48] Marios Pomonis, Theofilos Petsios, Angelos D Keromytis, Michalis Polychronakis,
and Vasileios P Kemerlis. krˆ x: Comprehensive kernel protection against just-in-
time code reuse. In Proceedings of the Twelfth European Conference on Computer
Systems, pages 420–436, 2017.

[49] Alexander Popov. Cve-2017-2636: Exploit the race condition in the n_hdlc
linux kernel driver. https://a13xp0p0v.github.io/2017/03/24/CVE-2017-2636.html,
2017.

[50] Alexander Popov. Stackleak: A long way to the linux kernel mainline. https:
//events19.linuxfoundation.org/wp-content/uploads/2017/11/STACKLEAK-
A-Long-Way-to-the-Linux-Kernel-Mainline-Alexander-Popov-Positive-
Technologies.pdf, 2018.

[51] Alexander Potapenko. security: allow using clang’s zero initialization for stack
variables. https://lwn.net/Articles/823152/, 2020.

[52] Sergej Proskurin, Marius Momeu, Seyedhamed Ghavamnia, Vasileios P Kemerlis,
and Michalis Polychronakis. xmp: Selective memory protection for kernel and
user space. In 2020 IEEE Symposium on Security and Privacy (SP), pages 563–577.
IEEE, 2020.

[53] Elena Reshetova. randomize kernel stack offset upon syscall. https://lwn.net/
Articles/785484/, 2019.

[54] Matteo Rizzo. Kernote writeup. https://org.anize.rs/0CTF-2021-finals/pwn/
kernote, 2021.

[55] AliAkbar Sadeghi, Salman Niksefat, and Maryam Rostamipour. Pure-call oriented
programming (pcop): chaining the gadgets using call instructions. Journal of
Computer Virology and Hacking Techniques, 14:139–156, 2018.

[56] Samsung. Real-time kernel protection (rkp). https://www.samsungknox.com/
en/blog/real-time-kernel-protection-rkp, 2016.

https://github.com/sefcom/KHeaps/blob/master/exploit_env/CVEs/CVE-2017-7533/poc/poc_cfh_combo.c
https://github.com/sefcom/KHeaps/blob/master/exploit_env/CVEs/CVE-2017-7533/poc/poc_cfh_combo.c
https://github.com/angr/angrop
https://lwn.net/Articles/546035/
https://lwn.net/Articles/546035/
https://lwn.net/Articles/693745/
https://lwn.net/Articles/517475/
https://lwn.net/Articles/517475/
https://www.synacktiv.com/en/publications/exploitation-of-a-double-free-vulnerability-in-ubuntu-shiftfs-driver-cve-2021-3492.html
https://www.synacktiv.com/en/publications/exploitation-of-a-double-free-vulnerability-in-ubuntu-shiftfs-driver-cve-2021-3492.html
https://lore.kernel.org/lkml/YfQ54x8zglPT%2FYnL@dev-arch.archlinux-ax161/t/#u
https://lore.kernel.org/lkml/YfQ54x8zglPT%2FYnL@dev-arch.archlinux-ax161/t/#u
https://blog.lexfo.fr/cve-2017-11176-linux-kernel-exploitation-part4.html
https://www.willsroot.io/2022/01/cve-2022-0185.html
https://www.willsroot.io/2022/01/cve-2022-0185.html
https://source.android.com/docs/security/test/kcfi
https://source.android.com/docs/security/test/kcfi
https://docs.google.com/document/d/1a9uUAISBzw3ur1aLQqKc5JOQLaJYiOP5pe_B4xCT1KA/edit#
https://docs.google.com/document/d/1a9uUAISBzw3ur1aLQqKc5JOQLaJYiOP5pe_B4xCT1KA/edit#
https://github.com/grimm-co/NotQuite0DayFriday/tree/trunk/2021.03.12-linux-iscsi
https://github.com/grimm-co/NotQuite0DayFriday/tree/trunk/2021.03.12-linux-iscsi
https://isovalent.com/blog/post/2021-11-container-escape/
https://isovalent.com/blog/post/2021-11-container-escape/
https://ruia-ruia.github.io/2022/08/05/CVE-2022-29582-io-uring/
https://ruia-ruia.github.io/2022/08/05/CVE-2022-29582-io-uring/
https://i.blackhat.com/USA-22/Wednesday/US-22-Jin-Monitoring-Surveillance-Vendors.pdf
https://i.blackhat.com/USA-22/Wednesday/US-22-Jin-Monitoring-Surveillance-Vendors.pdf
https://googleprojectzero.blogspot.com/2017/05/exploiting-linux-kernel-via-packet.html
https://googleprojectzero.blogspot.com/2017/05/exploiting-linux-kernel-via-packet.html
https://lwn.net/Articles/832434/
https://lore.kernel.org/all/20170116165044.GC29693@kroah.com/
https://lore.kernel.org/all/20170116165044.GC29693@kroah.com/
https://lkmidas.github.io/posts/20210123-linux-kernel-pwn-part-1/#the-simplest-exploit---ret2usr
https://lkmidas.github.io/posts/20210123-linux-kernel-pwn-part-1/#the-simplest-exploit---ret2usr
https://lkmidas.github.io/posts/20210205-linux-kernel-pwn-part-3/
https://lkmidas.github.io/posts/20210205-linux-kernel-pwn-part-3/
https://grsecurity.net/how_autoslab_changes_the_memory_unsafety_game
https://grsecurity.net/how_autoslab_changes_the_memory_unsafety_game
https://linxz.tech/post/compilers/2021-10-10-structleak/
https://google.github.io/security-research/pocs/linux/cve-2021-22555/writeup.html
https://google.github.io/security-research/pocs/linux/cve-2021-22555/writeup.html
https://wiki.osdev.org/Supervisor_Memory_Protection
https://wiki.osdev.org/Supervisor_Memory_Protection
https://a13xp0p0v.github.io/2017/03/24/CVE-2017-2636.html
https://events19.linuxfoundation.org/wp-content/uploads/2017/11/STACKLEAK-A-Long-Way-to-the-Linux-Kernel-Mainline-Alexander-Popov-Positive-Technologies.pdf
https://events19.linuxfoundation.org/wp-content/uploads/2017/11/STACKLEAK-A-Long-Way-to-the-Linux-Kernel-Mainline-Alexander-Popov-Positive-Technologies.pdf
https://events19.linuxfoundation.org/wp-content/uploads/2017/11/STACKLEAK-A-Long-Way-to-the-Linux-Kernel-Mainline-Alexander-Popov-Positive-Technologies.pdf
https://events19.linuxfoundation.org/wp-content/uploads/2017/11/STACKLEAK-A-Long-Way-to-the-Linux-Kernel-Mainline-Alexander-Popov-Positive-Technologies.pdf
https://lwn.net/Articles/823152/
https://lwn.net/Articles/785484/
https://lwn.net/Articles/785484/
https://org.anize.rs/0CTF-2021-finals/pwn/kernote
https://org.anize.rs/0CTF-2021-finals/pwn/kernote
https://www.samsungknox.com/en/blog/real-time-kernel-protection-rkp
https://www.samsungknox.com/en/blog/real-time-kernel-protection-rkp

[57] Edward J Schwartz, Thanassis Avgerinos, and David Brumley. Q: Exploit hard-
ening made easy. In 20th USENIX Security Symposium (USENIX Security 11),
2011.

[58] Edward J Schwartz, Cory F Cohen, Jeffrey S Gennari, and StephanieM Schwartz. A
generic technique for automatically finding defense-aware code reuse attacks. In
Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications
Security, pages 1789–1801, 2020.

[59] Kevin Z Snow, Fabian Monrose, Lucas Davi, Alexandra Dmitrienko, Christopher
Liebchen, and Ahmad-Reza Sadeghi. Just-in-time code reuse: On the effectiveness
of fine-grained address space layout randomization. In 2013 IEEE symposium on
security and privacy, pages 574–588. IEEE, 2013.

[60] Sami Tolvanen. Kcfi support [lwn.net]. https://lwn.net/Articles/893164/, 2022.
[61] Linus Torvalds. Kernel stack documentation. https://docs.kernel.org/x86/kernel-

stacks.html.
[62] Linus Torvalds. Linux kernel calling convention source code. https://

elixir.bootlin.com/linux/v5.17/source/arch/x86/entry/calling.h#L18.
[63] Linus Torvalds. native_write_cr4. https://elixir.bootlin.com/linux/v6.0/source/

arch/x86/kernel/cpu/common.c#L447.
[64] Linus Torvalds. Page table isolation (pti) documentation. https://www.kernel.org/

doc/html/latest/x86/pti.html.
[65] Linux Torvalds. Linux kernel source: arch/x86/include/asm/ptrace.h. https:

//elixir.bootlin.com/linux/v5.17/source/arch/x86/include/asm/ptrace.h#L59.
[66] Linux Torvalds. Linux kernel source code: fs/select.c. https://elixir.bootlin.com/

linux/v5.17/source/fs/select.c#L982.
[67] Linux Torvalds. Linux kernel source: fs/read_write.c. https://elixir.bootlin.com/

linux/v5.17/source/fs/read_write.c#L899.
[68] Lun Wang, Usmann Khan, Joseph Near, Qi Pang, Jithendaraa Subramanian, Neel

Somani, Peng Gao, Andrew Low, and Dawn Song. {PrivGuard}: Privacy reg-
ulation compliance made easier. In 31st USENIX Security Symposium (USENIX
Security 22), pages 3753–3770, 2022.

[69] Yuan Wei, Senlin Luo, Jianwei Zhuge, Jing Gao, Ennan Zheng, Bo Li, and Limin
Pan. Arg: Automatic rop chains generation. IEEE Access, 7:120152–120163, 2019.

[70] Wei Wu, Yueqi Chen, Xinyu Xing, and Wei Zou. {KEPLER}: Facilitating control-
flow hijacking primitive evaluation for linux kernel vulnerabilities. In 28th
USENIX Security Symposium (USENIX Security 19), pages 1187–1204, 2019.

[71] Wei Wu, Yueqi Chen, Jun Xu, Xinyu Xing, Xiaorui Gong, and Wei Zou. {FUZE}:
Towards facilitating exploit generation for kernel {Use-After-Free} vulnerabili-
ties. In 27th USENIX Security Symposium (USENIX Security 18), pages 781–797,
2018.

[72] Xi Yang, StephenM Blackburn, Daniel Frampton, Jennifer B Sartor, and Kathryn S
McKinley. Why nothing matters: The impact of zeroing. Acm Sigplan Notices,
46(10):307–324, 2011.

[73] Sungbae Yoo, Jinbum Park, Seolheui Kim, Yeji Kim, and Taesoo Kim. {In-
Kernel}{Control-Flow} integrity on commodity {OSes} using {ARM} pointer
authentication. In 31st USENIX Security Symposium (USENIX Security 22), pages
89–106, 2022.

[74] Kyle Zeng. [cve-2022-1786] a journey to the dawn. https://blog.kylebot.net/2022/
10/16/CVE-2022-1786/.

[75] Kyle Zeng, Yueqi Chen, Haehyun Cho, Xinyu Xing, Adam Doupé, Yan Shoshi-
taishvili, and Tiffany Bao. Playing for {K (H) eaps}: Understanding and improv-
ing linux kernel exploit reliability. In 31st USENIX Security Symposium (USENIX
Security 22), pages 71–88, 2022.

[76] Peter Zijlstra. [x86: Kernel ibt beginnings. https://lwn.net/ml/linux-kernel/
20211122170301.764232470@infradead.org/, 2021.

[77] Xiaochen Zou, Guoren Li, Weiteng Chen, Hang Zhang, and Zhiyun Qian. SyzS-
cope: Revealing High-Risk Security Impacts of Fuzzer-Exposed Bugs in Linux
kernel. In 31st USENIX Security Symposium (USENIX Security 22), pages 3201–3217,
2022.

13 APPENDIX

CVE
Trigger Original

A.P. S.A.
System Call Technique

2010-2959 ioctl ret2usr - ✗

2016-0728 keyctl ret2usr - ✗

2016-4557 close N/A - -
2016-6187 read KEPLER ②③ ✓

2017-2636 recvfrom change CR4 ① ✗

2017-6074 recvfrom change CR4 ① ✗

2017-7184 read pivot to heap ②④ ✓

2017-7308 lseek change CR4 ① ✗

2017-7533 write N/A - -
2017-8824 getsockopt change CR4 ① ✗

2017-10661 clock_adjtime change CR4 ① ✗

2017-11176 setsockopt pivot to user - ✗

2018-6555 getsockopt ret2usr - ✗

2021-3490 prctl N/A - -
2021-3492 read set_memory_x ①④ ✓

2021-4154 read pivot to heap ②④ ✓

2021-27365 sendmsg run_cmd ①④ ✗

2021-43267 ioctl N/A - -
2022-0185 read pivot to heap ②④ ✓

2022-1786 execve N/A - -
2022-25636 read pivot to heap ②④ ✓

2022-29581 ioctl pivot to heap ②④ ✓

Table 7: All of the old techniques that do not require addi-
tional primitives are no longer applicable in modern systems.
And all of the working techniques require additional primi-
tives besides CFHP. Additional Primitives (A.P.) needed by
the original technique compared with RetSpill, original tech-
nique Still Applicable (S.A.) against modern Linux kernel
deployed with protections. ① rdi control, ② any register con-
trol, ③ physmap leak, ④ heap info leak, N/A: original exploit
does not provide CFHP or there is no public end-to-end ex-
ploit.

https://lwn.net/Articles/893164/
https://docs.kernel.org/x86/kernel-stacks.html
https://docs.kernel.org/x86/kernel-stacks.html
https://elixir.bootlin.com/linux/v5.17/source/arch/x86/entry/calling.h#L18
https://elixir.bootlin.com/linux/v5.17/source/arch/x86/entry/calling.h#L18
https://elixir.bootlin.com/linux/v6.0/source/arch/x86/kernel/cpu/common.c#L447
https://elixir.bootlin.com/linux/v6.0/source/arch/x86/kernel/cpu/common.c#L447
https://www.kernel.org/doc/html/latest/x86/pti.html
https://www.kernel.org/doc/html/latest/x86/pti.html
https://elixir.bootlin.com/linux/v5.17/source/arch/x86/include/asm/ptrace.h#L59
https://elixir.bootlin.com/linux/v5.17/source/arch/x86/include/asm/ptrace.h#L59
https://elixir.bootlin.com/linux/v5.17/source/fs/select.c#L982
https://elixir.bootlin.com/linux/v5.17/source/fs/select.c#L982
https://elixir.bootlin.com/linux/v5.17/source/fs/read_write.c#L899
https://elixir.bootlin.com/linux/v5.17/source/fs/read_write.c#L899
https://blog.kylebot.net/2022/10/16/CVE-2022-1786/
https://blog.kylebot.net/2022/10/16/CVE-2022-1786/
https://lwn.net/ml/linux-kernel/20211122170301.764232470@infradead.org/
https://lwn.net/ml/linux-kernel/20211122170301.764232470@infradead.org/

	Abstract
	1 Introduction
	2 Background
	3 Threat Model
	4 Exploitation Technique Design
	4.1 Data Spillage
	4.2 Data Spillage Sources
	4.3 Weaponizing Spilled User Space Data

	5 RetSpill vs Modern Defenses
	6 Semi-Automatic RetSpill
	6.1 Snapshotting the Triggering System Call
	6.2 Identifying User-controllable Data
	6.3 ROP Chain Generation

	7 Evaluation
	7.1 Data Spillage Feasibility
	7.2 Semi-Automation Effectiveness
	7.3 Protection Bypass

	8 Defense
	9 Discussion
	10 Related Work
	11 Conclusion
	12 Acknowledgement
	References
	13 Appendix

