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Path Explosion Problem

N Conditional Nodes 
2N Execution Paths
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State-of-the-art

1. Symbolic-Assisted Fuzzing (Driller) 
2. Under-Constrained Symbolic Execution 
3. Merging Execution Paths (Veritesting) 
4. Interleaved Symbolic Execution (Symbion) 
5. Path Prioritization
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Shallow and Vulnerability-specific
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Approach
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Intuition

• More coverage != more bugs 

• Replicate the expertise of a human analyst 

• Similar bugs == similar patterns  
    (API calls, complex functions, etc.) 

• Find interesting execution contexts
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Approach Overview

Stage 1: Concrete Tracing

Stage 2: (Dynamic) Symbolic Tracing

Stage 3: Training

Stage 4: Prioritization

6

= angr



Stage 1: Concrete Tracing

• Dataset (binaries and known vulnerabilities) 
• Run binary inside the QEMU emulator  
• Send crashing input 
• Monitor the execution 
• Collect execution traces

7



Stage 2: Symbolic Tracing

• Static analysis (CFG, symbols, etc.) 

• Execute in angr 
• Synchronize execution with recorded trace 

• At every conditional node: 
- Create 2 new training points 
- Extract features

branch visits
centrality
function

community
...

syscalls
registers
memory

...

8



Stage 3: Training

Clean Dataset: 
• Numerical features 
• Categorical features 

Models: Log. Regression, SVM, Dec. Tree, etc. 
Metrics: Accuracy, Coverage, F-1, etc. 
Cross Validation: Leave-One-Out
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Example
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Stage 1: Concrete Tracing
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Stage 1: Concrete Tracing

INPUT: A!@^F^J%$#@!~(

TRACE: 1, 2, 5, 6, 8, 5, 6, 8, 13 ..

11



Stage 2: Symbolic Tracing

1, 2, 5, 6, 8, 5, 6, 8, 13 ..
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Stage 2: Symbolic Tracing

FALSE 111 12 0.0929 {'transmit', '_terminate'} {'__ne__(SYM,CONCR)'}

TRUE 117 13 0.0112 {'_terminate', 'receive'} {'CONCR'}

1, 2, 5, 6, 8, 5, 6, 8, 13 ..

+ STATIC INFO
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Stage 3: Training
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Stage 3: Training
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XGBoost model
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Stage 4: Prioritization

XGBoost model

Fast strategy

Balanced strategy
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Evaluation
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Experimental Setup

• Reimplement the state-of-the-art in a unified framework (angr) 
• AEG Loop Exhaustion 
• KLEE Coverage Optimization 
• KLEE Random 

• Binaries and crashing inputs 
• CGC Dataset 
• 3 real-world Linux CVEs (transfer learning) 

• 1 Binary per CPU Core (3,6GHz) 
• Run and monitor for 24 hours 
• Check and classify crashes
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Dataset

• CGC dataset (binaries and known vulnerabilities) 
• Statically compiled x86 binaries 
• Semantics equivalent to Linux binaries 
• Running on DECREE—a different OS with a smaller set of system 

calls 

• Linux CVEs  
• CVE-2004-1261 (asp2php) 
• CVE-2004-1288 (o3read) 
• CVE-2004-1292 (ringtonetools)
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Model Choice
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Comparison Results
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Transfer Learning
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• DSE inaccuracies make it hard to re-trace Linux binaries  
• CGC semantics are analogous to the Linux x86 semantics 

• This allows us to transfer some of the knowledge learned from the 
larger CGC dataset to the Linux dataset 



• We propose a novel path prioritization approach, leveraging 
supervised learning algorithms to steer DSE and reach interesting paths 

• We evaluate our approach on the CGC dataset, outperforming prior 
work with more (and different) vulnerabilities 

• We effectively transfer the models learned on the CGC dataset to 
achieve a better prediction accuracy on 3 real-world CVEs affecting Linux  

Future Work

• Train on a large dataset of Linux binaries using a different re-tracing 
framework 

• Adapt and apply to guide hybrid fuzzing
22
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