
SyML: Guiding Symbolic Execution Toward
Vulnerable States Through Pattern Learning
Nicola Ruaro, Lukas Dresel, Kyle Zeng, Tiffany Bao, Mario Polino, Andrea
Continella, Stefano Zanero, Christopher Kruegel, Giovanni Vigna

Dynamic Symbolic Execution?

1

Dynamic Symbolic Execution?

1

 Dynamic?

Emulated Environment
(Replayability)

2

Symbolic?

Abstract Domain
(Semantic Insight)

2

 Dynamic Symbolic Execution

Abstract Domain
(Semantic Insight)

Emulated Environment
(Replayability)

• Program Verification
• Vulnerability Analysis
• Exploit Generation
• Test-case Generation
• De-obfuscation
• ...

2

 Dynamic Symbolic Execution

Abstract Domain
(Semantic Insight)

Emulated Environment
(Replayability)

• Program Verification
• Vulnerability Analysis
• Exploit Generation
• Test-case Generation
• De-obfuscation
• ...

2

Path Explosion Problem

N Conditional Nodes

3

Path Explosion Problem

N Conditional Nodes
2N Execution Paths

Limit exploration to a selected
subset of execution paths

3

State-of-the-art

1. Symbolic-Assisted Fuzzing (Driller)
2. Under-Constrained Symbolic Execution
3. Merging Execution Paths (Veritesting)
4. Interleaved Symbolic Execution (Symbion)
5. Path Prioritization

4

1. Symbolic-Assisted Fuzzing (Driller)
2. Under-Constrained Symbolic Execution
3. Merging Execution Paths (Veritesting)
4. Interleaved Symbolic Execution (Symbion)
5. Path Prioritization

A. Classic Tree Traversal
• Depth First
• Breadth First
• Random

B. Heuristic-Based
• Loop Exhaustion
• Coverage Optimization
• ...

State-of-the-art

4

1. Symbolic-Assisted Fuzzing (Driller)
2. Under-Constrained Symbolic Execution
3. Merging Execution Paths (Veritesting)
4. Interleaved Symbolic Execution (Symbion)
5. Path Prioritization

A. Classic Tree Traversal
• Depth First
• Breadth First
• Random

B. Heuristic-Based
• Loop Exhaustion
• Coverage Optimization
• ...

State-of-the-art

Shallow and Vulnerability-specific

4

Approach

5

Intuition

• More coverage != more bugs

• Replicate the expertise of a human analyst

• Similar bugs == similar patterns
 (API calls, complex functions, etc.)

• Find interesting execution contexts

5

Approach Overview

Stage 1: Concrete Tracing

Stage 2: (Dynamic) Symbolic Tracing

Stage 3: Training

Stage 4: Prioritization

6

= angr

Stage 1: Concrete Tracing

• Dataset (binaries and known vulnerabilities)
• Run binary inside the QEMU emulator
• Send crashing input
• Monitor the execution
• Collect execution traces

7

Stage 2: Symbolic Tracing

• Static analysis (CFG, symbols, etc.)

• Execute in angr
• Synchronize execution with recorded trace

• At every conditional node:
- Create 2 new training points
- Extract features

branch visits
centrality
function

community
...

syscalls
registers
memory

...

8

Stage 3: Training

Clean Dataset:
• Numerical features
• Categorical features

Models: Log. Regression, SVM, Dec. Tree, etc.
Metrics: Accuracy, Coverage, F-1, etc.
Cross Validation: Leave-One-Out

9

Example

15

Stage 1: Concrete Tracing

11

Stage 1: Concrete Tracing

11

Stage 1: Concrete Tracing

INPUT: A!@^F^J%$#@!~(

TRACE: 1, 2, 5, 6, 8, 5, 6, 8, 13 ..

11

Stage 2: Symbolic Tracing

1, 2, 5, 6, 8, 5, 6, 8, 13 ..

12

Stage 2: Symbolic Tracing

1, 2, 5, 6, 8, 5, 6, 8, 13 ..

+ STATIC INFO

12

Stage 2: Symbolic Tracing

FALSE 111 12 0.0929 {'transmit', '_terminate'} {'__ne__(SYM,CONCR)'}

TRUE 117 13 0.0112 {'_terminate', 'receive'} {'CONCR'}

1, 2, 5, 6, 8, 5, 6, 8, 13 ..

+ STATIC INFO

12

Stage 3: Training

FALSE 111 12 0.0929 {'transmit', '_terminate'} {'__ne__(SYM,CONCR)'}

TRUE 117 13 0.0112 {'_terminate', 'receive'} {'CONCR'}

13

Stage 3: Training

0 111 12 0.0929

1 117 13 0.0112

1 1 0 1 0

0 1 1 0 1

FALSE 111 12 0.0929 {'transmit', '_terminate'} {'__ne__(SYM,CONCR)'}

TRUE 117 13 0.0112 {'_terminate', 'receive'} {'CONCR'}

Numerical Categorical

13

Stage 3: Training

0 111 12 0.0929

1 117 13 0.0112

1 1 0 1 0

0 1 1 0 1

FALSE 111 12 0.0929 {'transmit', '_terminate'} {'__ne__(SYM,CONCR)'}

TRUE 117 13 0.0112 {'_terminate', 'receive'} {'CONCR'}

Accuracy?
Coverage?
Time-to-Score?

XGBoost model

13

Stage 4: Prioritization

XGBoost model

Fast strategy

Balanced strategy

14

?

?

????

Stage 4: Prioritization

Fast strategy

Balanced strategy

XGBoost model

Score

14

0.4

0.1

0.80.40.10.2

Stage 4: Prioritization

Fast strategy

Balanced strategy

Choose

XGBoost model

Score

14

0.4

0.1

0.80.40.10.2

Stage 4: Prioritization

Fast strategy

Balanced strategy

Choose

XGBoost model

Score

14

0.4

0.1

0.80.40.10.2

Evaluation

15

Experimental Setup

• Reimplement the state-of-the-art in a unified framework (angr)
• AEG Loop Exhaustion
• KLEE Coverage Optimization
• KLEE Random

• Binaries and crashing inputs
• CGC Dataset
• 3 real-world Linux CVEs (transfer learning)

• 1 Binary per CPU Core (3,6GHz)
• Run and monitor for 24 hours
• Check and classify crashes

16

Dataset

• CGC dataset (binaries and known vulnerabilities)
• Statically compiled x86 binaries
• Semantics equivalent to Linux binaries
• Running on DECREE—a different OS with a smaller set of system

calls

• Linux CVEs
• CVE-2004-1261 (asp2php)
• CVE-2004-1288 (o3read)
• CVE-2004-1292 (ringtonetools)

17

Model Choice

18

Model Choice

18

Model Choice

18

Performance constraints:
• Simpler/Faster model

Model Choice

18

Performance constraints:
• Simpler/Faster model

Comparison Results

19

Comparison Results

19

• More

• Different

Model Analysis

Features Importance

Prediction Scores
Distribution

20

Model Analysis

e 6: Feature importancemeasurements for the
t and Random Forest models, reflecting the
ge score variations induced by each feature. H
s mean that the feature is more influential in

 num_branch_visitsnum_branch_visits

Features Importance

Prediction Scores
Distribution

20

Model Analysis

e 6: Feature importancemeasurements for the
t and Random Forest models, reflecting the
ge score variations induced by each feature. H
s mean that the feature is more influential in

 num_branch_visitsnum_branch_visits

Features Importance

Prediction Scores
Distribution

20

Transfer Learning

21

• DSE inaccuracies make it hard to re-trace Linux binaries
• CGC semantics are analogous to the Linux x86 semantics

• This allows us to transfer some of the knowledge learned from the
larger CGC dataset to the Linux dataset

• We propose a novel path prioritization approach, leveraging
supervised learning algorithms to steer DSE and reach interesting paths

• We evaluate our approach on the CGC dataset, outperforming prior
work with more (and different) vulnerabilities

• We effectively transfer the models learned on the CGC dataset to
achieve a better prediction accuracy on 3 real-world CVEs affecting Linux

Future Work

• Train on a large dataset of Linux binaries using a different re-tracing
framework

• Adapt and apply to guide hybrid fuzzing
22

Conclusion

Thank You!

SyML: Guiding Symbolic
Execution Toward Vulnerable
States Through Pattern
Learning

Nicola Ruaro - ruaronicola@ucsb.edu

Nicola Ruaro, Lukas Dresel, Kyle Zeng, Tiffany Bao,
Mario Polino, Andrea Continella, Stefano Zanero,
Christopher Kruegel, Giovanni Vigna

