An Empirical Study on Mobile Payment Credential Leaks and Their Exploits

> *Shangcheng Shi,* Xianbo Wang, Kyle Zeng, Ronghai Yang and Wing Cheong Lau

The Chinese University of Hong Kong

- Introduction to Mobile Payment Service and Credentials
- Leaking Sources of Payment Credentials
- Exploiting Leaked Payment Credentials
- Automated Mining for Payment Credentials
- Empirical Testing with PayKeyMiner

Third-Party Mobile Payment Service

- The user can pay the Merchant App through the Cashier.
- The messages in italic are secured cryptographically.

Payment Credentials: Payment Key

Cashier	Payment Credential	Usage	Assigned by the Cashier?	Shared Cashier's Public Key	
	Secret Key	HMAC	\checkmark	N/A	
Cashier1	RSA (Private) Key	Digital Signature	×	\checkmark	
	RSA' (Private) Key	Digital Signature	×	×	
Cashier2	Secret Key	HMAC	×	N/A	
Cashier3	Secret Key	HMAC	✓	N/A	
	PFX Certificate	Digital Signature	✓	✓	
Cashier4	Secret Key	HMAC	\checkmark	N/A	

- The Cashiers define payment keys for the HMAC or digital signature.
- The setting of these credentials differs among the Cashiers.

Payment Credentials: Other Credentials

- Android Signing Key (in Cashier2 & Cashier4)
- SSL Client Certificate (in Cashier2)

- Introduction to Mobile Payment Service and Credentials
- Leaking Sources of Payment Credentials
- Exploiting Leaked Payment Credentials
- Automated Mining for Payment Credentials
- Empirical Testing with PayKeyMiner

Leaking Sources of Payment Credentials

• Public Git Repositories

(1) GitHub

C Sear	rch or jump	to	/ Pull requests	Issues Mari	ketplace Exp	blore	
". (,							
<> Code	() Issue	s	s 🕞 Actions	III Projects	🗘 Wiki	() Security	🗠 Insights
		₽ master ▾				/ config / <mark>Conf</mark>	ig.java / <> Jump to ◄
		🌏 🛶 ini	t				
		२२ 1 contributor					

₩ merchant/config/params.php × +								
← → C ▲ Not secure								
🔶 GitLab Proj	ects Groups Snipp	pets Help						
S shop		chen > shop > Repository						
🔂 Project		master v	shop / merchant / config / params.php					
Repository			2 10215 200					
Files		autioreu a	z years ago					
Commits		B params.php 1.33 KB	G					

Mobile Apps (e.g., Android APKs)

Leaking Sources of Payment Credentials

- Merchant Servers
 - Caused by (1) flawed backend SDKs (2) lack of access control on credential files
 - The attacker can infer the endpoint of the credential file according to backURL, e.g.

https://sample.com/pay/backURL.php => https://sample.com/pay/secret/privateKey.p

- Introduction to Mobile Payment Service and Credentials
- Leaking Sources of Payment Credentials
- Exploiting Leaked Payment Credentials
- Automated Mining for Payment Credentials
- Empirical Testing with PayKeyMiner

Exploiting Leaked Payment Credentials

- Merchant Impersonation Exploit:
 - $_{\circ}$ (1) Downloading Transaction Record (2) Refund (3) Money Transfer

- Android Package Signature Forgery:
 - Overall, 400+ valid Android signing keys have been detected.

Exploiting Leaked Payment Credentials

- Backward SSO Attack:
 - Two Cashiers offer SSO service but fail to isolate their services, e.g., shared user_ids.
 - The attacker may hijack the victim's Merchant account with Profile Exploit [1].
 - Reusage of payment keys as the SSO credentials

[1] R. Yang, W. C. Lau and S. Shi, "Breaking and Fixing Mobile App Authentication with OAuth2.0-based Protocols" in ACNS, 2017

Exploiting Leaked Payment Credentials

- Cross-App Payment Notification Forgery:
 - When using the digital signature, the public key of the Cashier tends to be shared.
 - Some Merchant Server overlooks the app identifier in the payment notifications.
 - The attacker may forge payment notifications to cheat another Merchant App.

- Introduction to Mobile Payment Service and Credentials
- Leaking Sources of Payment Credentials
- Exploiting Leaked Payment Credentials
- Automated Mining for Payment Credentials
- Empirical Testing with PayKeyMiner

PayKeyMiner

 We develop an automated tool to enable large-scale mining for the payment credentials leaked in the wild.

- Introduction to Mobile Payment Service and Credentials
- Leaking Sources of Payment Credentials
- Exploiting Leaked Payment Credentials
- Automated Mining for Payment Credentials
- Empirical Testing with PayKeyMiner

Empirical Testing Result

Cashier		Cashier	1		Cashier	2	Cas	shier3	Casi	hier4
Source \ Credential	Secret Key	RSA Key	RSA' Key	Secret Key	Client Cert	Android Key	Secret Key	PFX Cert	Secret Key	Android Key
GitHub Repo	900	1518	1737	6651	3131	491	0	188	25	1
GitLab Repo	9	20	20	57	31	1	0	1	0	0
Android APK	75	1950	354	2567	3	0	2	0	10	0
Merchant Server	N/A	44	0	N/A	11	N/A	0	2	0	N/A
Overall	975	3332	2085	9093	3170	492	2	189	34	1

 PayKeyMiner has detected roughly 20,000 unique payment credentials leaked from different sources.

Empirical Testing Result

- Public Git Repositories:
 - 7.8% of the credentials are from old git commits.
 - Over 700 payment credentials are related to iOS apps.
 - Most public GitLab repositories are owned by some outsourcing companies.
- Android APKs:
 - Overall, 4,961 unique payment credentials have been detected.
 - 31.9% of these credentials are from the old app versions only.
- Merchant Servers:
 - We use HTTP HEAD to probe these exposed credential files without downloading them.
 - 7.1% percent of the tested servers fail to protect their credentials.

Longitudinal Study

Cashier	Cast	nier1	Cashier2			
Fixing Methods	3 months later 12 months later		3 months later	12 months later		
#Updating the Leaked Key	2 (0.3%)	255 (35.5%)	337 (9.2%)	443 (12.1%)		
#Hiding the GitHub Repo	127 (17.7%)	146 (20.3%)	377 (10.3%)	651 (17.8%)		
#Deleting Git Commits	117 (16.3%)	65 (9.1%)	218 (6.0%)	198 (5.4%)		
#Pushing New Git Commits	8 (1.1%)	3 (0.4%)	29 (0.8%)	24 (0.7%)		
#No Response	464 (64.6%)	249 (34.7%)	2701 (73.8%)	2346 (64.1%)		
#Detected Key (#Unique Key)	718 ((624)	3662 (2728)			

• We reported 3,000+ payment keys to the Cashiers after our initial testing.

- We regularly monitor these submitted keys to study the responses from the Merchants.
- Around 60% of the leaking Merchants have not made any response.

- We give the following suggestions to mitigate the payment credential leaks:
- (1) The Cashiers should alarm their Merchants about the serious consequences of payment credential leaks.
- (2) The Cashiers should review their services and timely fix the insecure implementations, including the vulnerable backend SDKs and shared *user_id*s.
- (3) The Cashiers should proactively detect and revoke the leaked credentials
- (4) The Merchants had better periodically update their payment credentials.

Thanks! Q&A

