
An Empirical Study on Mobile Payment
Credential Leaks and Their Exploits

Shangcheng Shi, Xianbo Wang, Kyle Zeng,

Ronghai Yang and Wing Cheong Lau

The Chinese University of Hong Kong

Outline

• Introduction to Mobile Payment Service and
Credentials

• Leaking Sources of Payment Credentials

• Exploiting Leaked Payment Credentials

• Automated Mining for Payment Credentials

• Empirical Testing with PayKeyMiner

2

Third-Party Mobile Payment Service

• The user can pay the Merchant App through the Cashier.
• The messages in italic are secured cryptographically.

3

Payment Credentials: Payment Key

Cashier Payment
Credential

Usage Assigned by
the Cashier?

Shared Cashier’s
Public Key

Cashier1

Secret Key HMAC ü N/A

RSA (Private) Key Digital Signature û ü

RSA’ (Private) Key Digital Signature û û

Cashier2 Secret Key HMAC û N/A

Cashier3
Secret Key HMAC ü N/A

PFX Certificate Digital Signature ü ü

Cashier4 Secret Key HMAC ü N/A

• The Cashiers define payment keys for the HMAC or digital
signature.

• The setting of these credentials differs among the Cashiers.
4

Payment Credentials: Other Credentials

• Android Signing Key (in Cashier2 & Cashier4)
• SSL Client Certificate (in Cashier2)

5

Outline

• Introduction to Mobile Payment Service and
Credentials

• Leaking Sources of Payment Credentials

• Exploiting Leaked Payment Credentials

• Automated Mining for Payment Credentials

• Empirical Testing with PayKeyMiner

6

Leaking Sources of Payment
Credentials

• Public Git Repositories
(1) GitHub (2) GitLab

• Mobile Apps (e.g., Android APKs)

7

Leaking Sources of Payment
Credentials

• Merchant Servers
o Caused by (1) flawed backend SDKs (2) lack of access control on credential files

o The attacker can infer the endpoint of the credential file according to backURL, e.g.,

https://sample.com/pay/backURL.php => https://sample.com/pay/secret/privateKey.pem

8

Outline

• Introduction to Mobile Payment Service and
Credentials

• Leaking Sources of Payment Credentials

• Exploiting Leaked Payment Credentials

• Automated Mining for Payment Credentials

• Empirical Testing with PayKeyMiner

9

Exploiting Leaked Payment Credentials

• Merchant Impersonation Exploit:
o (1) Downloading Transaction Record (2) Refund (3) Money Transfer

• Android Package Signature Forgery:
o Overall, 400+ valid Android signing keys have been detected.

10

Exploiting Leaked Payment Credentials

• Backward SSO Attack:
o Two Cashiers offer SSO service but fail to isolate their services, e.g., shared user_ids.

o The attacker may hijack the victim’s Merchant account with Profile Exploit [1].

o Reusage of payment keys as the SSO credentials

• Android Package Signature Forgery:

o
[1] R. Yang, W. C. Lau and S. Shi, “Breaking and Fixing Mobile App Authentication with OAuth2.0-based Protocols” in ACNS, 2017

11

Exploiting Leaked Payment Credentials

• Cross-App Payment Notification Forgery:
o When using the digital signature, the public key of the Cashier tends to be shared.

o Some Merchant Server overlooks the app identifier in the payment notifications.

o The attacker may forge payment notifications to cheat another Merchant App.

• Android Package Signature Forgery:
o

12

Outline

• Introduction to Mobile Payment Service and
Credentials

• Leaking Sources of Payment Credentials

• Exploiting Leaked Payment Credentials

• Automated Mining for Payment Credentials

• Empirical Testing with PayKeyMiner

13

PayKeyMiner

• We develop an automated tool to enable large-scale mining for the
payment credentials leaked in the wild.

14

Outline

• Introduction to Mobile Payment Service and
Credentials

• Leaking Sources of Payment Credentials

• Exploiting Leaked Payment Credentials

• Automated Mining for Payment Credentials

• Empirical Testing with PayKeyMiner

15

• PayKeyMiner has detected roughly 20,000 unique payment
credentials leaked from different sources.

16

Cashier Cashier1 Cashier2 Cashier3 Cashier4

Source \ Credential Secret
Key

RSA
Key

RSA’
Key

Secret
Key

Client
Cert

Android
Key

Secret
Key

PFX
Cert

Secret
Key

Android
Key

GitHub Repo 900 1518 1737 6651 3131 491 0 188 25 1

GitLab Repo 9 20 20 57 31 1 0 1 0 0

Android APK 75 1950 354 2567 3 0 2 0 10 0

Merchant Server N/A 44 0 N/A 11 N/A 0 2 0 N/A

Overall 975 3332 2085 9093 3170 492 2 189 34 1

Empirical Testing Result

Empirical Testing Result
• Public Git Repositories:

o 7.8% of the credentials are from old git commits.

o Over 700 payment credentials are related to iOS apps.

o Most public GitLab repositories are owned by some outsourcing companies.

• Android APKs:

o Overall, 4,961 unique payment credentials have been detected.

o 31.9% of these credentials are from the old app versions only.

• Merchant Servers:

o We use HTTP HEAD to probe these exposed credential files without downloading them.

o 7.1% percent of the tested servers fail to protect their credentials.

17

• We reported 3,000+ payment keys to the Cashiers after our initial testing.

• We regularly monitor these submitted keys to study the responses from the
Merchants.

• Around 60% of the leaking Merchants have not made any response.

18

Longitudinal Study
Cashier Cashier1 Cashier2

Fixing Methods 3 months later 12 months later 3 months later 12 months later

#Updating the Leaked Key 2 (0.3%) 255 (35.5%) 337 (9.2%) 443 (12.1%)

#Hiding the GitHub Repo 127 (17.7%) 146 (20.3%) 377 (10.3%) 651 (17.8%)

#Deleting Git Commits 117 (16.3%) 65 (9.1%) 218 (6.0%) 198 (5.4%)

#Pushing New Git Commits 8 (1.1%) 3 (0.4%) 29 (0.8%) 24 (0.7%)

#No Response 464 (64.6%) 249 (34.7%) 2701 (73.8%) 2346 (64.1%)

#Detected Key (#Unique
Key)

718 (624) 3662 (2728)

Suggested Fixes

• We give the following suggestions to mitigate the payment credential
leaks:

• (1) The Cashiers should alarm their Merchants about the serious
consequences of payment credential leaks.

• (2) The Cashiers should review their services and timely fix the insecure
implementations, including the vulnerable backend SDKs and shared
user_ids.

• (3) The Cashiers should proactively detect and revoke the leaked credentials.

• (4) The Merchants had better periodically update their payment credentials.

19

Thanks!
Q&A

20

