
Playing for K(H)eaps:
Understanding and Improving Linux Kernel Exploit Reliability

Kyle Zeng*1, Yueqi Chen*2,3, Haehyun Cho1,4,
Xinyu Xing2,5, Adam Doupé1, Yan Shoshitaishvili1, Tiffany Bao1

∗First two authors contributed equally to this work

1Arizona State University
2Pennsylvania State University

3University of Colorado Boulder
4Soongsil University

5Northwestern University

Linux Kernel Heap Exploit

2

Vuln Deref

3

Linux kernel exploits are dangerous

Linux kernel exploits are known to be unreliable

Exploit stabilization heavily relies on personal expertise

Systematically study why Linux kernel
heap-based exploits are unreliable

4

Research Questions

• What are the commonly used exploit stabilization techniques?

• How effective are existing techniques?

• Why do existing techniques work?

• Is there any way to further improve exploit reliability?

5

Our Approach

6

Techniques Results

Knowledge

Model

Quantitative
Experiment

Qualitative
Interview Investigation

Modeling

New
Technique Combination

Technique Collection

Defragmentation

Heap Grooming

Single-Thread Heap Spray

Multi-Process Heap Spray

CPU Pinning

7

11 Linux kernel security experts

∗obtained exemption from IRB

Quantitative Experiment

8

• Real-world exploits: 17 public exploits for distinct CVEs

• Baseline exploits: strip away existing techniques

• Exploit variants: apply one single technique to baseline

85 samples in total

Quantitative Experiment Result

9

Baseline Defragment Heap
Grooming

Single-Thread
Spray

Multi-Process
Spray

CPU
Pinning

Success 38.61% 31.88% 74.40% 61.83% 82.55% 51.51%

Evaluation result of all techniques

Quantitative Experiment Result - Cont.

10

Baseline Defragmentation

Success 13.05% 42.64%

Evaluation Result for OOB Exploits Evaluation Result for non-OOB Exploits

Baseline Defragmentation

Success 49.26% 27.40%

Kernel Heap Exploit Model

11

Context Setup Vulnerability
Effect Delay Allocator Bracing Final Preparation

Start Vulnerability
Triggered

Allocator
Corrupted

Allocator
Braced

Payload
Triggered

OOB-Object Exploits

UAF/DF Exploits

OOB-Freelist Exploits

Object Release
Take Effect

Object
Overflowed

Heap Layout
Preparation

Heap Layout
Preparation

Dangling Pointer
Created

Freelist
Overwritten

Critical Phases

Slot-Critical Phase

12

Allocator-Critical Phase

OOB Exploits DF Exploits

Unreliability Factors

13

• Unknown Heap Layout

• Unexpected Heap Usage

• Unwanted Task Migration

• Unpredictable Corruption Timing

Kernel Heap Exploit Model

14

Context Setup Vulnerability
Effect Delay Allocator Bracing Final Preparation

Start Vulnerability
Triggered

Allocator
Corrupted

Allocator
Braced

Payload
Triggered

OOB-Object Exploits

UAF/DF Exploits

OOB-Freelist Exploits

Object Release
Take Effect

Object
Overflowed

Heap Layout
Preparation

Heap Layout
Preparation

Freelist
Overwritten

Slot-Critical & Allocator-Critical

Slot-Critical

Allocator-CriticalSlot-Critical

Dangling Pointer
Created

Context Conservation

15
OOB Exploits

Context Conservation - Cont.

Use Time Stamp Counter (TSC) as the context-switch indicator
 tsc1 = rdtsc()

 tsc2 = rdtsc()

 diff = tsc2 - tsc1

If diff is huge, then it is a fresh time slice

16

Baseline Context Conservation

Idle 62.48% 64.07%

Busy 36.75% 49.84%

Combo Technique

• Unknown Heap Layout

• Unexpected Heap Usage

• Unwanted Task Migration

• Unpredictable Corruption Timing

17

Defragmentation

What if we combine them?

Context Conservation

CPU Pinning

Multi-Process Heap Spray

Combo Technique - Cont.

18

Exploit Variant: baseline + applicable techniques

Baseline Real-world Combo

Success 36.51% 66.99% 91.15%

Evaluation Result

Conclusion

19

• Systematically studied the kernel heap exploit reliability problem

• Proposed a model to explain the problem and guide future research

• Discovered a new technique that improve exploit reliability by 14.87%

• Designed a technique combination that improves exploit reliability by

135.53%

Playing for K(H)eaps:
Understanding and Improving Linux Kernel Exploit Reliability

Thank you!
Q & A

zengyhkyle@asu.edu

@ky1ebot

@Kyle-Kyle

https://github.com/sefcom/KHeaps Kyle Zeng

https://github.com/sefcom/KHeaps

