
This paper is included in the Proceedings of the
32nd USENIX Security Symposium.

August 9–11, 2023 • Anaheim, CA, USA
978-1-939133-37-3

Open access to the Proceedings of the
32nd USENIX Security Symposium

is sponsored by USENIX.

Greenhouse: Single-Service Rehosting of Linux-Based
Firmware Binaries in User-Space Emulation

Hui Jun Tay, Kyle Zeng, Jayakrishna Menon Vadayath, Arvind S Raj,
Audrey Dutcher, Tejesh Reddy, Wil Gibbs, Zion Leonahenahe Basque,

Fangzhou Dong, Zack Smith, Adam Doupé, Tiffany Bao, Yan Shoshitaishvili,
and Ruoyu Wang, Arizona State University

https://www.usenix.org/conference/usenixsecurity23/presentation/tay

Greenhouse: Single-Service Rehosting of Linux-Based Firmware Binaries in
User-Space Emulation

Hui Jun Tay, Kyle Zeng, Jayakrishna Menon Vadayath, Arvind S Raj, Audrey Dutcher, Tejesh Reddy,
Wil Gibbs, Zion Leonahenahe Basque, Fangzhou Dong, Zack Smith, Adam Doupé,

Tiffany Bao, Yan Shoshitaishvili, Ruoyu Wang

Arizona State University
{htay2,zengyhkyle,jvadayat,arvindsraj,dutcher,vsiginen,

wfgibbs,zbasque,fdong12,zesmith1,doupe,tbao,yans,fishw}@asu.edu

Abstract
As IoT devices grow more widespread, scaling current anal-

ysis techniques to match becomes an increasingly critical task.
Part of this challenge involves not only rehosting the firmware
of these embedded devices in an emulated environment, but to
do so and discover real vulnerabilities. Current state-of-the-art
approaches for rehosting must account for the discrepancies
between emulated and physical devices, and thus generally fo-
cus on improving the emulation fidelity. However, this pursuit
of fidelity ignores other potential solutions.

In this paper, we propose a novel rehosting technique,
user-space single-service rehosting, which emulates a sin-
gle firmware service in user space. We study the rehosting
process involved in hundreds of firmware samples to gener-
alize a set of roadblocks that prevent emulation and create
interventions to resolve them. Our prototype Greenhouse
automatically rehosts 2,841 (39.7%) of our collected 7,140
firmware images from nine different vendors. Our approach
sidesteps many of the challenges encountered by previous
rehosting techniques and enables us to apply common vul-
nerability discovery techniques to our rehosted images such
as user-space coverage-guided fuzzing. Using these tech-
niques, we find 717 N-day vulnerabilities and 26 zero-day
vulnerabilities on a subset of our rehosted firmware services.

1 Introduction

The Internet of Things (IoT) outnumbers humans almost
2-to-1: As of 2022, approximately 14.4 billion connected
IoT devices [18] exist out in the wild, and current estimates
project the total number to reach 34.2 billion by 2025 [21].
Naturally, the security of these devices is not perfect, with 747
vulnerabilities across 86 different vendors disclosed in the first
half of 2022 alone [34]. The actual number of vulnerabilities,
undiscovered, unreported, and lurking in IoT firmware, is
almost certainly much higher.

To discover latent vulnerabilities in IoT devices, re-
searchers look to apply program analysis techniques, includ-
ing dynamic approaches such as web scanning and coverage-

guided fuzzing, on IoT device firmware. However, such at-
tempts are often curtailed by the inaccessibility of IoT devices:
Purchasing them does not scale and can be time-consuming,
overly expensive, or even impossible. Even with physical
access to IoT devices, the rigidity of hardware, operating sys-
tems, and applications on such devices usually make applying
aforementioned dynamic analysis techniques very difficult.

A common solution to address this problem is firmware
rehosting, or rehosting for short, which emulates IoT software
on powerful, flexible, non-IoT devices, such as personal com-
puters (PCs) and servers. A key challenge in rehosting is the
high-fidelity emulation of characteristics and features that are
specific to each IoT device. For example, IoT firmware com-
monly stores data in NVRAM (non-volatile random-access
memory), which does not exist on most x86 PCs and must be
emulated by the rehosting environment. Peripherals can pose
difficulties, too. A software service on a wireless router may
send and receive radio signals using antennas that only exist
on the router, and a full emulation of behaviors of antennas
usually requires significant manual effort.

Seeking high rehosting fidelity, researchers have proposed
techniques to either emulate peripherals [4, 14, 19, 22, 28]
or proxy the communication to peripherals running on real
IoT devices [17, 27, 33]. However, most current peripheral-
aware rehosting techniques only allow for the analysis of
firmware based on small, embedded software platforms (such
as FreeRTOS [2] or Arduino [3]) or no operating system (OS)
at all (“bare-metal” blobs). Critically, current approaches
cannot scale to the analysis of more complex Linux-based
firmware, the OS that is used by 43% of IoT devices [15].

State-of-the-art rehosting solutions that target Linux-based
firmware rely on peripheral-oblivious full-system rehosting,
typically by repacking the firmware sample into a standard
filesystem format, replacing the embedded Linux kernel with
a rehost-specific version to support some ad hoc generic de-
vice emulation, and booting the firmware sample in a full-
system emulator such as QEMU [5, 21]. However, this im-
plicit concession of rehosting fidelity (e.g., by replacing the
embedded kernel) leads to rehosting failures. For example,

USENIX Association 32nd USENIX Security Symposium 5791

Firmadyne [5] only achieves IP connectivity on 21% of at-
tempted firmware samples. Even for firmware that is os-
tensibly properly rehosted, lack of fidelity leads to errors in
firmware operation: FirmAE [21], a refined version of Fir-
madyne, measures a successful rehosting rate of 79%, but
we show in this paper that almost half of FirmAE-rehosted
targets actually do not maintain sufficient functionality to test
externally-facing services.

One clear research direction to mitigate rehosting failures is
to increase fidelity. But is this pursuit of fidelity in emulation a
must for rehosting? We performed a random sampling of 100
firmware CVEs reported on NVD [25] in the last two years
and found that only 14% of them were hardware related, and
many of the remaining ones are intrinsically independent of
hard-to-emulate, device-specific characteristics and features.
For example, in September 2022, Tenda disclosed 10 Buffer
Overflow vulnerabilities (CVE-2022-40067 to CVE-2022-
40076) in network-facing functions of the httpd binary in its
Linux-based AC21 device firmware, and none of these vulner-
abilities require interactions with peripherals. For the purpose
of vulnerability discovery and vulnerability verification on
IoT software, it is often unnecessary to achieve high-fidelity
emulation of these characteristics and features if the vulnera-
ble service can run without them. In fact, the pursuit of fidelity
can blind researchers to other potential techniques that might
be able to achieve successful purpose-specific rehosting.

In this paper, we propose a novel rehosting technique: Au-
tomated single-service rehosting. Unlike other rehosting solu-
tions, single-service rehosting does not mandate high-fidelity
emulation of OS or hardware. Instead, we design a series of
techniques that automatically find execution barriers during
the rehosting of a firmware service, use a toolkit of interven-
tions (e.g., patching the service binary to eliminate certain
environment checks) to surmount these barriers, and validate
the patched service to check if our patches break intended
features. By not emulating OS- or hardware-specific char-
acteristics and features, our solution not only avoids pitfalls
encountered by full-system techniques (such as incompatibil-
ities between the inserted rehosted kernel and the embedded
system itself), but as a bonus also enables user-space emula-
tion, which significantly reduces the execution overhead that
full-system emulation techniques exhibit. Moreover, user-
space emulation enables common vulnerability discovery and
verification techniques, such as coverage-guided fuzzing.

We develop a platform, Greenhouse, to perform automated
rehosting of single-services via user-space emulation. Our ap-
proach fully rehosted 2,841 web servers out of 7,140 crawled
firmware images and successfully confirmed 717 N-day ex-
ploits using the RouterSploit framework [36]. We also inte-
grate our rehosted images with AFL++ [39] for fuzzing in
user space, achieving a throughput that is 200% higher than
the state-of-the-art firmware-fuzzing solution, EQUAFL [41].
We then extend this integration to 2,612 targets in our dataset
and found 11,395 unique crashes. Of these targets, we further

examined 14 rehosted targets with 79 crashes and confirmed
26 to be zero-day vulnerabilities.

Finally, in the course of developing service validation
checks for Greenhouse, we found that prior work incorrectly
reported non-functional rehosted firmware services as suc-
cessful rehosting targets. For example, FirmAE performs
an HTTP request against rehosted web servers to determine
rehosting success, but does not check the content of the web-
page or the status code for errors (i.e., only checks if the
service responds with something). These non-functional ser-
vices are of limited use in discovering or assessing vulnera-
bilities. Thus, we also propose new criteria for differentiating
among rehosting failures, partially rehosted services, and fully
rehosted services. Using this technique, our comparative eval-
uation shows that Greenhouse is slightly more successful than
state-of-the-art work at firmware rehosting, but rehosts mostly
different firmware, resulting in 3,981 unique rehosted samples
when combined with full-system rehosting approaches.

Contributions. In summary, our contributions are:
• We propose a novel rehosting technique, user-space

single-service rehosting, for rehosting firmware services
for the purpose of finding and assessing vulnerabilities
on IoT software. We implement this technique in a pro-
totype called Greenhouse.

• We thoroughly study the rehosting process and provide
a detailed breakdown of causes (termed roadblocks) of
emulation failures in user-mode rehosting alongside both
generic and specific interventions.

• We conduct a large-scale evaluation on 7,140 unique
firmware samples from nine different vendors and fully
rehost 2,841 web servers. We also demonstrate unique
advantages of Greenhouse for vulnerability discovery
and assessment by comparing against the state-of-the-art
firmware fuzzing solution, EQUAFL.

In the spirit of open science, we publicly release the source of
Greenhouse and research artifacts at https://github.com/
sefcom/greenhouse.

2 Background and Motivation

Rehosting is the process of recreating the behaviors of
one or several firmware services inside an emulated envi-
ronment. Given the dire situation of IoT-world security,
most firmware rehosting techniques aim to enable security
analysis techniques, such as automated vulnerability dis-
covery [14, 22, 27, 32, 40] and vulnerability risk assessment
(i.e., assessing the real-world impact on firmware of an ex-
ploit) [5, 21, 42] to be performed on firmware targets.

In this section, we first discuss the different rehosting goals
of existing works (Section 2.1). Next we define rehosting
fidelity (Section 2.2), map the goals and focuses of existing
works to differing levels of fidelity, and identify a research
gap (Section 2.3). Finally, we motivate our solution that fills

5792 32nd USENIX Security Symposium USENIX Association

https://github.com/sefcom/greenhouse
https://github.com/sefcom/greenhouse

the gap (Section 2.4).

2.1 Rehosting Goals
The rigidity of firmware and its original hardware severely

limits the types of analysis that researchers can conduct. Thus,
the need to apply automated and scalable security analyses to
a firmware service motivates firmware rehosting research [13].
As these firmware services are usually tightly coupled with
their software and hardware environment, emulating even a
single service may require recreating all underlying hardware
and software components. Creating a perfect emulation for
every firmware service is complicated by the varied nature of
IoT firmware.

Researchers categorize IoT firmware into three types [13,
24]: Type-I firmware, which runs general-purpose OSs
(e.g., Linux) adapted to embedded environments. Type-II
firmware, which has custom OSs designed for embedded
environments, but still shares a distinction between the appli-
cation layer and the kernel. Type-III firmware, also known as
“monolithic firmware,” where the code is a single blob running
on the device, and interacts with its hardware using special-
ized interfaces. Because Type-II and Type-III firmware are
tightly coupled to its hardware, generalized rehosting tools
for Type-II and Type-III are less common compared to Type-I
rehosting tools.

Rehosting techniques must provide a virtual environment
that is capable of executing a firmware service and minimize
discrepancies between a rehosted environment and the origi-
nal environment (i.e., a real device) based on their analyses.
For example, works that look to analyze the security of pe-
ripheral communication protocols (e.g., USB) must emulate
or integrate these components [19,27,33]. Solutions that min-
imize environment discrepancies may simulate intermediary
hardware layers [7, 14].

2.2 Rehosting Fidelity
Divergences between the emulated and the original envi-

ronments can cause a rehosted service to behave differently
or even fail to run. Abstractly, we define the fidelity of an
emulated firmware component as the degree to which it re-
sembles the same component on a real device. We further
coin the fidelity of static components (e.g., files) as Extraction
Fidelity and the fidelity of dynamic components (e.g., runtime
behaviors of a service) as Execution Fidelity. In general, the
more components resemble their counterparts on the original
device, the higher the fidelity of an emulation.
Extraction Fidelity. Static components in a firmware im-
age include files and data that is stored on the image or in
hardware (e.g., NVRAM). Researchers usually extract these
components from downloaded firmware images and physi-
cal devices. A high degree of Extraction Fidelity means that
the majority of components on the original device are ob-
tained or extracted, while low Extraction Fidelity arises when
extraction fails or yields incomplete results.

Partial Data Extraction

Complete Data Extraction

Limited Emulation of a Single-Service

Full Emulation of a
Single-Service

Full Emulation
with
Proxied/Emulated
Peripherals

Execution on Real
Devices

Extraction
Fidelity

Execution
FidelityFull Emulation

of Multiple Services

Cost: high

Cost: low

Figure 1: Hierarchy of rehosting requirements. Both rehost-
ing fidelity and costs increase from bottom to top.

Execution Fidelity. Execution Fidelity of a firmware service
can be compounded by the presence or absence of peripher-
als—hardware components that communicate with the service
to perform specific tasks, such as controlling LEDs and read-
ing sensor data. Examples of low Execution Fidelity in an
emulated service include unintended behaviors, broken com-
munications (e.g., failing to log in to an emulated web portal),
or prematurely exiting or crashing. Achieving a high level of
Execution Fidelity is critical for vulnerability discovery and
assessment, as behaviors caused by low Execution Fidelity
may lead to false positives (if unintended crashes are treated
as vulnerability indicators) or false negative alarms (when
vulnerable code does not run in emulation).

Execution Fidelity and Extraction Fidelity. High Extrac-
tion Fidelity is critical for high Execution Fidelity, because
configuration entries and file content can affect the behavior
of firmware services. Figure 1 illustrates the hierarchy of
rehosting requirements. The lower levels are more funda-
mental and easier to achieve, and the upper levels are usually
much harder to achieve. Costin [9] considered this hierar-
chy in terms of emulation level, with a “perfect” emulation
corresponding to the top of the rehosting pyramid, followed
by original kernel, generic kernel, userland emulation and
lastly no emulator (data extraction). Jetset [20] divides it into
different approaches, each at increasing levels of fidelity: test-
ing without emulation, partial rehosting, full rehosting and
hardware-in-the-loop emulation.

2.3 Existing Approaches
Table 1 categorizes existing rehosting techniques. Most

solutions either skew towards achieving a high Execution
Fidelity for dynamic analysis or sidestep the issue entirely via
pure static analysis [12] or a model-based approach [17, 20].

In cases where the Execution Fidelity of emulation is of
concern, researchers tend to use an OS-level emulator like
QEMU-system. Even then, configuration, software, and hard-
ware discrepancies between the real device and an emulation
environment are often inevitable. Resolving these discrep-

USENIX Association 32nd USENIX Security Symposium 5793

Fidelity Emulation Analysis Firmware Type Techniques
Full Emulation of Multiple Services + Peripherals OS-level Emulation (QEMU) Dynamic Analysis II/III µEmu [42], Jetset [20], P2IM [14], HALucinator [7]
Full Emulation of Multiple Services + Peripherals OS-level Emulation (QEMU) Dynamic Analysis I Charm [33]
Full Emulation of Multiple Services + Peripherals Model-based Emulation Dynamic Analysis II/III Pretender [17]
Full Emulation of Multiple Services OS-level Emulation (QEMU) Dynamic Analysis I Costin16 [9], Firmadyne [5], FirmAE [21], FirmFuzz [32]
Full Emulation of Multiple Services Model-based Emulation Dynamic Analysis II/III Fuzzware [28]
Full Emulation of Multiple Services Hybrid Emulation (QEMU) Dynamic Analysis I FirmAFL, EQUAFL [41], Frankenstein [27]
Complete Data Extraction Model-based Emulation Static Analysis III HEAPSTER [16]
Complete Data Extraction None Static Analysis I/II/III FirmUSB [19], Karonte [12]

Table 1: State-of-the-art rehosting techniques organized by the Execution Fidelity and Extraction Fidelity.

ancies piecemeal requires significant manual effort. Further-
more, OS-level emulation comes with high performance over-
head, especially for dynamic analysis techniques like fuzzing.

Alternatively, works like Costin [9] considered the use
of user-space emulation for dynamic analysis. Despite pos-
sessing lower overhead, rehosting in user-space results in
significantly lower fidelity for emulated services, noted to be
“quite unstable” by the authors [9].

A workaround that Frankenstein [27], FirmAFL [40] and
EQUAFL [41] use is to augment the fidelity of the user-space
emulation with a snapshot from a real device or a full-system
emulator. This results in a tight coupling between the fuzzer
and the rehosted targets, which hampers the generality of re-
hosting techniques. For example, FirmAFL requires intensive
manual effort for harnessing each new firmware target (details
in Appendix).

2.4 Motivation
Existing techniques imply that firmware rehosting man-

dates high execution fidelity. However, high execution fi-
delity is often unnecessary for security analysis of firmware,
especially when the target vulnerabilities do not require high
fidelity.

We sampled 100 firmware CVEs that are reported on
NVD [25] within the past two years and found that only
14% of them were hardware-related. Many of the remaining
ones are intrinsically independent of hard-to-emulate, device-
specific characteristics and features. For example, Tenda
disclosed 10 vulnerabilities in the httpd executable of AC21
router, none of which interact with peripherals [35].

Firmware design may require that an emulated service
load configuration entries, communicate with a peripheral,
or invoke device-specific features, before reaching vulnera-
ble program points. Instead of blindly increasing Execution
Fidelity, researchers propose to overcome these roadblocks
by providing low-fidelity substitutes, such as creating lim-
ited emulations using stubs [5, 21, 32] or models [14, 17, 42]
Our insight is that we can use similar approaches to handle
the low-fidelity parts of user-space rehosting. Rather than a
crude, high-effort reimplementation of hardware components
to increase Execution Fidelity across the entire emulated en-
vironment, it is sufficient for security analysis purposes to
bypass these roadblocks and only focus on components that
are immediately relevant to the execution of potentially vul-

nerable code.
Because most IoT vulnerabilities only involve one firmware

service, we focus on user-mode emulation of individual
firmware services. By recreating only the necessary emu-
lation surrounding a firmware service, we aim to gain the
benefits of high Execution Fidelity without expensive full-
system emulation. This allows us to significantly improve the
execution speed and the portability of rehosted services.

3 Single-Service Rehosting

Greenhouse rehosts Type-I IoT devices (as defined in Sec-
tion 2.1) that use Linux-based OSs. We select routers because
they represent the largest and most commonly studied subset
of IoT devices. We limit ourselves to firmware images of
the following 32-bit architectures: MIPS, MIPSEL, ARM,
and X86, as they represent the majority of publicly available
firmware images.

A single service on firmware. Consider the firmware on a
device with multiple running processes that constantly ex-
change information during execution. We can define services
based on data hierarchy between these processes. A single
service represents a self-contained set of processes within
the image that do not communicate with any other processes
that the primary process is not the parent of. For example, a
web server may invoke several scripts to dynamically gener-
ate HTML content for users. The web server is the primary
process, which, together with the scripts, constitutes a single
service.

Greenhouse focuses on rehosting these types of firmware
services. To minimize the execution overhead, we rehost
services using QEMU-user to emulate service binaries inside
a chroot file system, which we term single-service rehosting,
as opposed to full-system rehosting (via QEMU-system) that
other solutions use. Single-service rehosting runs the target
service binary in user-space and does not emulate any kernel
modules.

4 Greenhouse Overview

Greenhouse is an automated system for single-service re-
hosting of single firmware services. It comprises three main
components: the Runner, Checker, and Fixer. Supplement-
ing these main components are an Extractor component that

5794 32nd USENIX Security Symposium USENIX Association

Greenhouse

Runner Checker

Fixer

Extractor FirmAE
(optional)Crawler

 Exporter

Rehosted
Images

Firmware
Images

binwalk

Qemu Selenium

Docker

angr

radare2

Figure 2: An overview of the Greenhouse pipeline.

performs the initial image extraction as well as an Exporter
component that packages the rehosting results for later use.
Outside of Greenhouse we created a Crawler module that
built the initial firmware dataset used in our evaluation.

A firmware image being rehosted by Greenhouse starts at
the Extractor, spends the majority of the rehosting process in
an iterative loop among the Runner, Checker, and Fixer, and
finally exits the process as a standalone Docker container via
the Exporter. This process is fully automated.

While other works like Firmadyne [5], FirmAE [21] and
Costin et al [9]. contain similar components that perform one
or more of these steps, they apply all fixes at once. Green-
house monitors the execution of a firmware service and selec-
tively apply necessary fixes, which maximizes fixing opportu-
nities while minimizes reduction to execution fidelity. To the
best of our knowledge, ARI [26] is the only other work that
iteratively rehosts.

4.1 File System Extraction
Like existing rehosting solutions [5,8,12,21,26,41], Green-

house uses Binwalk to extract with all its optional depen-
dencies installed. We run Binwalk with -M (Mashotrya) and
--preserve-symlinks to recursively extract the root file sys-
tem from the firmware image and preserve symlinks. Theo-
retically, Greenhouse supports rehosting any type of single
service. In our evaluation, we rehost HTTP webservers, UPnP
servers, and DNS servers.

4.2 Target Emulation
The Runner is the core of Greenhouse’s iterative rehosting

loop. It executes each web server inside a Docker container
via QEMU-user. We use a Docker container to facilitate tear-
down and setup between iterations, because each run leaves
artifacts in the file system and environment that may affect
subsequent emulations if not cleaned up. We use chroot to
ensure that the file system that is visible to the rehosted web
server is the same as the on-device file system. Runner sup-
ports two tracing modes: In partial tracing mode, it collects
syscall traces of the parent process and all child processes. In

full tracing mode, it collects syscall and instruction traces (in-
cluding addresses of all executed basic blocks) of the parent
process and all child processes.

The Runner starts the web server, waits for up to 60 sec-
onds, then invokes the Checker component to test the web
server. The emulation and the rehosting loop terminate if
the Checker component deems the service as successfully
rehosted. Otherwise, the Runner parses the generated trace
logs and waits for a potential wait loop. If it detects a wait
loop or if the time spent in emulation exceeds a threshold
the Runner forcibly terminates the emulation. Otherwise, it
continues waiting and running the Checker against the web
server periodically (e.g., every 10 seconds). This design is
to handle the significant variance in start-up time between
firmware services—using a fixed delay was infeasible.

At the end of emulation, all trace logs are collected and
sent to the Fixer.

4.3 Fidelity Testing

The Checker component tests the fidelity of the rehosted
service (which the Runner emulates) and passes the results to
the Fixer, which then determines what interventions to apply.

The Checker takes as input the brand name of the firmware
and an initial list of potential ports to test. We use a Checker
that is specific to the service type (HTTP, UPnP, or DNS)
to check for connectivity and test behaviors of the service.
The Checker uses the result of checks and trace logs from the
Runner to determine the level of Execution Fidelity of the
rehosted service (detailed in Section 5).

While we only implement three types of Checkers for eval-
uation, users may plug-in other Checkers for rehosting other
types of services.

4.4 Service Fixing

The Fixer performs run-time interventions that are used
by Greenhouse to bypass rehosting roadblocks encountered
during the iterative rehosting process. It uses traces and error
logs from the Runner to diagnose potential roadblocks that
limit Execution Fidelity. For each roadblock, the Fixer ap-
plies the corresponding intervention, which we will detail in
Section 6.

After applying interventions for all identified roadblocks,
the Fixer passes the modified file system and web server bi-
nary back to the Runner to initiate the next rehosting iteration.
We repeat this loop until the emulated image is rehosted to a
sufficient level of Execution Fidelity (as determined by the
Checker), until we reach a point where we are unable to
improve the fidelity, or we reach the maximum number of
iterative cycles (empirically, 25 in our experiments). The
rehosted file system is then packaged by the Exporter.

USENIX Association 32nd USENIX Security Symposium 5795

4.5 Exporting Results
The Exporter creates a tar file containing the rehosted file

system, a set of scripts for running the rehosted service, meta-
information such as username and passwords for logging
in, and a Docker compose file that specifies container-level
information (e.g., network devices) that is needed to run the
rehosted service.

5 Rehosting Metrics

Greenhouse’s iterative approach gradually improves the
execution fidelity for user-space emulation until rehosting
succeeds. This section discusses the metrics Greenhouse uses
to determine the degree of success it achieves on a given
service, broken into stages, and the reasoning behind how
Greenhouse defines and measures the success in each stage.
Each stage represents a tangible improvement to level of
Execution Fidelity during emulation for the target service, as
discussed in Section 2.2.

Existing rehosting techniques define a wide range of
success metrics, depending on their goals and analysis fo-
cuses. These metrics include mapping execution traces to
expected behaviors [20, 40], detecting functional network be-
haviors [5, 9, 21], or executing without crashing [41]. The
ability to find new undiscovered vulnerabilities through suc-
cessful analysis is taken as a further proof that rehosting is
effective [7, 14, 28, 32, 40–42].

Separating each of these stages are rehosting roadblocks
that hinder progression to the next level of Execution Fidelity.
As discussed in Section 2.4, these roadblocks are discrep-
ancies between the original device and the emulated envi-
ronment where the rehosted service runs. We empirically
determine a set of common roadblocks through manually
examining hundreds of firmware samples and develop inter-
ventions for many of them. Section 6 discusses the types of
roadblocks encountered and the interventions of Greenhouse
to resolve them in greater detail.

By iteratively applying these interventions based on the
roadblock encountered, Greenhouse can drive the specific
Extraction Fidelity and Execution Fidelity of the service up
to the level where dynamic analysis techniques (e.g., fuzzing)
can be effectively applied.
Stage 1: Unpack. To begin single-service rehosting, Green-
house must first unpack a firmware image and extract from
it a complete file system. Because Greenhouse only sup-
ports Type-I firmware, we consider success at this stage to
be the extraction of a recognizable Type-I Linux-based file
system, which is indicated by the presence of a shell (e.g.,
/bin/busybox or /bin/sh) binary with a supported archi-
tecture. Failing to locate these binaries is an indicator of
low Extraction Fidelity, which requires additional unpacking
effort.
Stage 2: Execute. Rather than trying to emulate the entire
boot environment, Greenhouse locates an executable binary

that is associated with the target service using a list of common
executable names. This list varies depending on the type of
target service (HTTP, UPnP, or DNS). Greenhouse verifies if
the identified binary can execute inside a chroot environment
using QEMU-user. As this stage is more concerned with
achieving high Extraction Fidelity than Execution Fidelity, we
consider the stage successful even if the process immediately
exits or crashes after execution.
Stage 3: Connect. The goal of this stage is to achieve a mini-
mal level of communication with the emulated firmware ser-
vice. This usually requires the emulated service to execute
past its environment checks and bind to one or more ports at
its desired addresses. Reaching this stage is crucial for any
dynamic vulnerability analysis techniques, as many firmware
exploits involve communicating with its network-facing ser-
vices.

We consider this stage successful if we can connect to
the rehosted service without it terminating, timing-out, or
prematurely crashing. Becaue different services have different
network protocols, each plugin has its own logic for checking
connections. For example, the HTTP plugin sends an HTTP
request and checks that a response is received (while ignoring
the Status Code of the response), which is the same as the
success metric in FirmAE. Success in this stage indicates that
the rehosting has achieved a low level of Execution Fidelity,
which may be sufficient for dynamic analysis in some cases
(e.g., finding vulnerabilities in request parsing code of a web
server).
Stage 4: Interact. Once the low level of Execution Fidelity
is reached, Greenhouse attempts to drive the rehosting to
as high a level of Execution Fidelity as possible. Note that
Greenhouse may perform interventions that barely improve
or even detract from other parts of the emulation but that
specifically improve the fidelity of our target service for the
purposes of our analysis. For example, Greenhouse may
remove a CAPTCHA check for a service to streamline fuzzing
for crashes inside the CGI handlers exposed by a web server.

Naturally, the Interact Checkers vary greatly between ser-
vice types. To determine if a web server is running at a high
Execution Fidelity level, Greenhouse performs basic inter-
actions with the emulated web service. It checks the status
codes of HTTP responses and compares the returned content
against a set of pre-set error strings to identify malfunctioning
backends. It also uses Selenium to load dynamic content and
attempt some common login protocols. For DNS servers, the
DNS plugin in Greenhouse makes a request to resolve local-
host and parses the resulting DNS reply (if there is any). By
developing protocol-specific Checkers, Greenhouse provides
generalized heuristics for determining the fidelity of network-
facing services without leaning into corner cases. While these
checks are not an exhaustive test of the service being rehosted,
our evaluation in Section 7 will show that rehosting a service
to this stage is sufficient for many vulnerability discovery and
assessment tasks.

5796 32nd USENIX Security Symposium USENIX Association

6 Roadblocks and Interventions

When trying to improve the Extraction and Execution Fi-
delity of an image, multiple complications may arise that
limit progress. We term these obstacles rehosting roadblocks,
and their corresponding solutions interventions1. This sec-
tion identifies the common roadblocks and presents several
automatable interventions for them, which we implement in
Greenhouse. It also discusses how these roadblocks might
differ between single-service and full-system rehosting.

6.1 Roadblocks
While the exact set of complications differs from firmware

to firmware, in the course of developing Greenhouse, we ob-
served that there are many similarities and overlaps between
them, even across different brands. Previous studies have dis-
cussed at length the issues of Missing Paths (R1), Peripheral
Access (R3), NVRAM support (R4), and Network Interfaces
(R5); We include them for completeness and to highlight how
considerations from user-space rehosting might affect these
roadblocks.
Missing Paths (R1). The initial extraction contains broken
symlinks, missing files/folders, or missing/misplaced library
files. Often, these files are generated or unpacked as part of the
initialization scripts run at boot, and contain data critical for
proper execution of firmware binaries. Full-system rehosting
solutions run these initialization scripts as the default OS
booting behavior, while single-service rehosting must infer
these paths if the rehosted service does not generate them.
Runtime Arguments (R2). Some binaries take specific con-
figurations on the command-line during runtime (e.g., path to
webroot content, default starting port to bind to, etc.). This
problem is unique to single-service rehosting, as most full-
system rehosting solutions delegate the issue to the initializa-
tion scripts that the OS runs when booting.
Peripheral Access (R3). A common roadblock to both full-
system and single-service emulations. Firmware services may
try to communicate with hardware peripherals in a variety
of ways ranging from accessing a file under /dev to directly
accessing a reserved memory region. In our limited emulation
these behaviors usually result in a crash or exit.
NVRAM Configurations (R4). NVRAM (Non-Volatile
Random-Access Memory) is a hardware component common
to many firmware routers. Previous works like FirmAE and
Firmadyne have identified it as a core component that usually
contains default configuration data necessary for the firmware
image to start up and function. As QEMU does not explic-
itly implement NVRAM, both full-system and single-service
emulations must address this.
Hard-coded Network Devices (R5). Networked services
may have hardcoded “default” IP addresses or device names
that they bind to. The service fails if a network device with

1Prior work referred to interventions as arbitrations [21], augment-
ing [40], mitigations [26] and refinement [13].

that address or name is not present. This is further com-
plicated in single-service rehosting as the TCP/IP stack im-
plementation in QEMU-user is incomplete (e.g., it does not
support IPV6_RECVORIGDSTADDR).
Multi-Binary Behavior (R6). Besides configuration files
generated by initialization scripts at startup, some web servers
may generate content or load configurations via IPC (inter-
process communication) with separate, daemonized processes
running in the background. Single-service rehosting must ex-
plicitly run these processes, while full-system rehosting does
so as part of the OS boot process.
Environment Checks (R7). A catch-all category that covers
any miscellaneous checks that the firmware binary might per-
form on its environment. Examples include: checking for
DNS/web access, checking the user/group we are executing
under, checking environment variables, and checking CPU re-
source usage. We characterize these checks by their common
behavior of exiting if certain conditions are not met.
Environment Mangling (R8). Many firmware binaries run
in an enclosed environment, which enables them to behave
with complete disregard for other processes. These behaviors
may mangle or corrupt parts of the emulation environment
that are not intended to be visible to the emulated service. For
example, a firmware binary may redirect stdout and stderr,
then close every other file descriptor, under the assumption
that it is the only process making use of file-system I/O. This
mangles the logging done by QEMU-user, on which Green-
house relies to gather critical data for identifying roadblocks.
Full-system rehosting may avoid this problem by using OS-
level logging infrastructure.

6.2 Interventions
Each of the aforementioned roadblocks has a corresponding

intervention that we perform. Interventions either try to fulfill
the criteria imposed by a Roadblock or bypass it. While
fulfilling a Roadblock usually leads to better fidelity while
bypassing lowers it, identifying the criteria of each specific
Roadblock on each specific system is not a scalable solution.

Greenhouse implements a “best-effort” intervention system
that tries to fulfill as many roadblocks as possible before
falling back to the patcher.

Previous research described solutions to Roadblocks R1,
R3, R4, and R5. Some solutions resemble the ones below,
such as File Setup (I1), File Sanitization (I2), Boot-up Syn-
chronization (I3), using a nvram-faker library (I4), and creat-
ing dummy Network Interfaces (I6). Unique to Greenhouse
are the interventions that address user-space only roadblocks
(I5, I7, and I8) and our patching system that manipulates the
service binary to bypass checks. We also adapted several ex-
isting interventions to user-space due to complications from
Environmental Mangling (R8).
File Setup (I1) - [R1, R3, R7]. Using strace, we detect
missing files by filtering for common file access system-calls
such as open() and access(). We parse them for the ex-

USENIX Association 32nd USENIX Security Symposium 5797

pected paths and create a corresponding empty file or folder
in the rehosted file system. If we can find a backup of the file,
or if the file was misplaced in our environment, we copy it to
the desired location. Unlike previous rehosting approaches,
Greenhouse only adds missing files that the rehosted service
tries to access. This minimizes conflicts with dynamically
generated files during runtime.
File Sanitization (I2) - [R3, R7]. We observed that periph-
eral access is sometimes performed through I/O operations on
/dev/ nodes, and can be bypassed by replacing the node with
an empty file. This handles cases where a service appears
to hang due to a blocking read call on a non-existent device
interface, pipe, or socket. We thus “sanitize” the file-system
immediately after unpacking when extraction is done by re-
placing all special files, except for symlinks (block, character
device, pipe, and socket), with empty regular files. This ap-
proach is based on similar solutions used by FirmAE and
Costin et al.
Boot-up Synchronization (I3) - [R1, R2, R7]. We use Fir-
mAE to run a full-system emulation of the image and obtain
its “boot-up data,” namely the runtime processes, files, and
QEMU serial logs created or started by its boot-up and ini-
tialization scripts. Examples include files that are generated
during boot, command-line arguments that are passed to the
service, and any configuration data loaded into NVRAM. We
use the boot-up data to improve the fidelity without simulat-
ing the OS boot process in user-space. Our approach differs
from similar works [40, 41] in that Greenhouse is augmented
by but not dependent on FirmAE, as demonstrated by the
set of firmware services that only Greenhouse could rehost
in Section 7. We also perform an ablation study to show
that Greenhouse performs comparatively well without this
intervention.
nvram-faker (I4) - [R4]. nvram-faker is an open source
project that emulates the behavior of common NVRAM li-
brary functions by storing key-value pairs as files [10]. Firma-
dyne and FirmAE use similar libraries to tackle the same road-
block. We extend it with the nvram-set feature and provide
wrappers for more NVRAM functions. We cross-compile
a standalone version of the library and replace the default
libnvram.so in the extracted file system. Our improved
nvram-faker logs all keys used by the firmware, including
ones that are not part of its current dictionary. Greenhouse
then tries to provide a key-value pair in the next iteration of
the emulation based on the NVRAM values from boot-up
data or from a list of default pairs. As observed by FirmAE,
providing an empty string value significantly reduces crashes.
Greenhouse takes this further by using a dictionary of com-
mon key-value pairs for each brand generated from online
sources and our dataset. During the evaluation, we found that
providing these non-empty default values transforms many
partially rehosted services to fully rehosted.
Runtime ArgParser (I5) - [R2]. We provide a fallback inter-
vention if command-line arguments for the firmware binary

cannot be obtained from boot-up data. A simple heuristics-
based regex parser uses the brand and name of the web server
to parse for potential runtime arguments and supply com-
mon defaults to them. Both single-service and full-system
rehosting may conduct this intervention.
Dummy Network Devices (I6) - [R5]. We adapt this ap-
proach from FirmAE. In Greenhouse, a modified version
of the QEMU bind() syscall logs whenever a bind is at-
tempted on a network address or device name. Greenhouse
then configures Docker containers in our emulation with the
corresponding network bridge. If the binary must run outside
Docker containers, Greenhouse provides an automatically
generated script that creates the dummy devices.
Background Script Plugins (I7) - [R6]. Although a generic
solution to handle multi-service targets is out of scope, Green-
house provides a specific solution for target services that must
communicate with other background processes. Greenhouse
allows pluggable heuristics for identifying executables for
background processes and how to run them. Greenhouse
provides plugins for xmldb and config, which are used by
D-Link and Netgear firmware respectively to set and retrieve
configuration data.
IPv6 Workaround (I8) - [R5]. Many new IoT devices,
routers included, use IPv6 for communication. This is not al-
ways supported by the host machine where Greenhouse runs,
such as the Kubernetes cluster where we conduct our eval-
uation. The implementation of IPv6 in QEMU-user is also
incomplete. Hence, we implemented a workaround in QEMU
to divert all binding to IPv6 addresses to the IPv4 address
0.0.0.0, and ensure socket operations with unimplemented or
unsupported IPV6 flags always succeed.
Patching sysinfo() (I9) - [R7]. Some routers adaptively
disable services based on load, which makes dynamic analysis
difficult. This was particularly notable during large-scale
analysis when running multiple Greenhouse emulations on
the same Kubernetes node. We patch QEMU so sysinfo()
always returns 0 to prevent these behaviors.
Logging Behavior (I10) - [R8]. Our emulation in user-mode
shares file descriptors with the emulated service. This prob-
lem is exclusive to single-service rehosting. To ensure that our
emulation trace logs are not mangled, we modify the open()
and close() syscalls, as well as the behavior of QEMU’s
trace function, to reserve a range of file descriptors (300–
400) for our log files. Attempts to close descriptors in this
range will return failure.

6.3 Patching
In the case that our specific interventions are insufficient,

Greenhouse attempts to directly patch the firmware binary to
bypass the section of code that prevents it from reaching the
next stage. While this might potentially lower the Extraction
and Execution Fidelity of the firmware binary, we found that
by limiting the type of patching done to specific conditions, it
is surprisingly effective at enabling further rehosting.

5798 32nd USENIX Security Symposium USENIX Association

Greenhouse handles three types of patches: a Premature
Exit patch, a Wait Loop patch, and a Crashing Instruction
patch. To identify the relevant patch automatically, we use
angr [30] to construct a context-sensitive control-flow graph
(CFG) of the firmware binary. Each node in the CFG is
differentiated by its address and the addresses of all the blocks
that call it in the CFG. This allows us to map the execution
trace of a binary to the CFG for Premature Exit and Wait
Loop patches.
Premature Exit Patch. The Premature Exit Patch handles the
general case where the binary tests the result of some manner
of check, then branches to an exit function if the check fails.
By identifying the branch instruction taken by the firmware
binary that leads to the exit function, we can flip the branch to
bypass the check altogether. To do so, Greenhouse maps the
execution trace of the firmware binary to the context-sensitive
CFG and scans for call to exit() or abort(). In case no
such function signature can be found, but the binary exited
cleanly, it assumes that the last instruction in the execution
trace is the exit function.

The Patcher then recursively prunes the context sensitive
CFG from the exit call to the nearest dominator within the
mapped trace that is the parent of a child that it (1) does not
dominate and (2) is not part of the original trace. Because all
nodes prior to the dominator eventually lead to the exit, we
may assume that this block corresponds to the critical branch
point that leads to the exit. We then search the block for the
relevant jump instruction and patch it to point at the untaken
branch.

In practice, this Patch is effective at handling most Envi-
ronment Checks (R7) and certain types of Peripheral Access
(R3). It can also help compensate for interventions that result
in empty file reads (I1) when the binary expects content.
Wait Loop Patch. The Wait Loop Patch handles cases where
instead of exiting the binary is instead trapped in a constant
loop waiting for external input from another process. Exam-
ples include a poll() for network activity in a basic web
connectivity check, or a sleep() loop while waiting for a
particular peripheral to connect.

The Wait Loop Patch uses the same context-sensitive CFG
mapped to the execution trace to determine that a program is
looping. It attempts to find a branching node that is not part
of the original execution trace and does not immediately lead
back to the loop. As many firmware binaries are essentially
large loops, we constrain ourselves to “tight” loops of no
larger than 30 basic blocks.

To ensure we do not inadvertently patch the section of
code responsible for handling incoming server requests, this
patch is only invoked in cases where no network connectivity
was detected despite timing out. Similar to the Premature
Exit Patch, the Wait Loop Patch is a generic intervention that
handles a subset of Environment Checks (R7) and Peripheral
Access (R3) roadblocks.
Crashing Instruction Patch. The Crashing Instruction Patch

usually does not need the CFG. It takes the address of the
last recorded instruction in the execution trace, maps it to its
respective basic block in the firmware binary, and patches
the next instruction that would be executed, replacing it with
nops. In the case where the instruction is outside the address
space of the binary, such as inside a library call, the Patch
uses the CFG to determine the address of the caller instruction
and place a nop there instead.

This patch is only invoked when a segmentation fault is
detected during emulation, as it assumes that the next instruc-
tion that would have been recorded caused the fault. While
this can be highly destructive to the firmware binary, and the
overall fidelity of the emulation, it is one of the cleanest ways
to handle invalid direct memory accesses such as in R3.

7 Evaluation

We design a series of experiments to answer the following
research questions:

• How does Greenhouse’s rehosting performance com-
pare to state-of-the-art full-system rehosting solutions?
(Section 7.2)

• What factors impact the rehosting performance of Green-
house? (Section 7.3)

• Does Greenhouse reach a level of Execution Fidelity
that enables vulnerability discovery and risk assessment?
(Section 7.4)

• How much does Greenhouse-rehosted service improve
the fuzzing performance? (Section 7.5)

Evaluation Environment. We conducted all experiments on
a Kubernetes cluster that contains 42 nodes and over 2,000
CPU cores. We ran 300 pods in parallel and assigned each
pod a minimum of 2 CPU cores and 16GB of RAM. We mod-
ified FirmAE and EQUAFL to run on a Kubernetes cluster.
Our modifications will be released when we open source all
research artifacts.

7.1 Firmware Image Collection
To ensure we have a wide coverage of router models with

the most up-to-date firmware samples, we built our own
firmware image collection by crawling websites of nine well-
known router brands (ASUS, Belkin, D-Link, Linksys, Net-
gear, Tenda, TP-Link, TRENDnet, and Zyxel) and download-
ing all versions of router and camera firmware images that are
available. This provided 12,943 firmware images. We filtered
them and removed encrypted or incomplete images and any
images that do not resemble Type-I Linux-based firmware.
We also removed images that ran on unsupported architecture.
Then, we merged the remaining images with FirmAE’s data
set and removed duplicates. As with FirmAE, we obtained
the latest version of firmware for each device (as of February
2023), identified by model, revison number, and region. Our
final collection of firmware images includes 7,140 unique

USENIX Association 32nd USENIX Security Symposium 5799

FirmAE EQUAFL Greenhouse
Brand Initial Unpack Execute Connect Interact Unpack Execute Connect Interact Unpack Execute Connect Interact
ASUS 846 843 843 568 11 801 241 14 0 829 822 791 789
Belkin 63 63 57 31 6 60 8 2 2 61 56 46 33
D-Link 1,426 1,384 1,071 734 515 1,099 493 200 190 843 721 568 512
Linksys 92 84 81 61 40 85 13 7 4 83 34 24 23
Netgear 2,712 2,606 2,499 1,632 1,129 2,334 706 145 56 2,273 2,010 1,517 1,094
Tenda 173 161 158 35 10 148 13 0 0 156 103 71 64

TP-Link 1,064 1,052 994 572 441 1,016 636 149 145 902 428 170 66
TRENDnet 744 718 674 415 240 692 300 52 43 523 463 332 254

Zyxel 20 20 20 10 6 20 7 2 2 20 15 8 6
Total 7,140 6,931 6,397 4,058 2,403 6,255 2,417 571 442 5,690 4,652 3,525 2,841

Table 2: Numbers of FirmAE-, EQUAFL- and Greenhouse-rehosted web servers that reached each of the four rehosting
milestones, organized by brand.

images across 1,764 unique devices. This collection is 6.3x
FirmAE’s data set (with 1,124 images) and 3.7x the dataset
from Costin et al (with 1,925 images).

7.2 Firmware Rehosting Results
We compare Greenhouse against FirmAE and EQUAFL.

EQUAFL, as a fuzzing solution, is an extension of Firmadyne.
Because FirmAE is based on and performs strictly better than
Firmadyne, we do not evaluate against Firmadyne.

We also considered Costin et al., which examines multiple
emulation approaches and settles on full-system emulation
via QEMU. Because it is similar to Firmadyne, we do not
compare Greenhouse against Costin.

Different types of services have different network proto-
cols. Our rehosting platform currently supports three types
of networking services: HTTP, UPnP, and DNS. We focus
our evaluation on web servers as prior research did, while
reporting rehosting results for UPnP and DNS servers.
Determining levels of Execution Fidelity. We use the
Checker component to determine the Execution Fidelity in
terms of the stages described in Section 5. Additionally, we
parse the logs of Greenhouse, EQUAFL, and FirmAE to deter-
mine the degree to which Unpack and Execute succeeded for
each image. For Greenhouse, we consider Unpack successful
if we find a web server executable, and a successful Execute if
we can run it in QEMU-user until a bind() syscall is detected.
For EQUAFL and FirmAE, we consider Unpack successful
if they can find and mount a file system image, and success-
ful Execute if they can boot the image in QEMU-system to
the point that they attempt to enable network interfaces. We
define a successful Connect for FirmAE to be a curl request
that does not time out per their implementation.
Results. Table 2 shows the numbers of rehosted firmware
services (or images for FirmAE) that reached each rehosting
stage. Table 3 shows the number of successful rehosts for
each device for the latest firmware in the dataset. Overall, the
number of Greenhouse-rehosted firmware services is compa-
rable to that of FirmAE for both latest (538 vs. 558) and total
(2,841 vs. 2,403) firmware images. Greenhouse is signifi-
cantly more successful for some brands (e.g., ASUS, Belkin,
and Tenda) while less successful for other brands (e.g., Net-

Devices EQUAFL FirmAE Greenhouse
asus 157 0 2 138
belkin 63 2 6 33
dlink 355 35 100 101
linksys 73 2 30 18
netgear 311 11 131 118
tenda 105 0 5 30
tplink 489 76 217 28
trendnet 191 10 61 66
ZyXEL 20 2 6 6
TOTAL 1,764 138 558 538

Table 3: Number of successfully rehosted HTTP web-services
(that reach Interact) for the latest version of each firmware
device in our dataset.

gear and TP-Link). EQUAFL could execute 2,417 targets but
only rehost 442, and failed to rehost two brands (ASUS and
Tenda).

FirmAE only Greenhouse only Intersection Union
ASUS 9 787 2 798
Belkin 2 29 4 35
D-Link 80 76 436 592
Linksys 30 12 11 53
Netgear 495 457 637 1,589
Tenda 1 55 9 65
TP-Link 422 47 19 488
TRENDnet 98 112 142 352
Zyxel 3 3 3 9
Total 1,140 1,578 1,263 3,981

Table 4: Overlaps of firmware services that FirmAE and
Greenhouse successfully rehosted (i.e., reaching the Inter-
act milestone), as well as numbers of services that are only
rehosted by one solution, organized by brand.

Overlaps between rehosted services. We examined the over-
lap between FirmAE- and Greenhouse-rehosted services. We
exclude EQUAFL due to its poor rehosting performance. In-
terestingly, as shown in Table 4, the set of firmware services
that Greenhouse fully rehosted has little overlap with the ones
that FirmAE rehosted. Together, FirmAE and Greenhouse
can rehost 3,981 out of 7,140 services, which cover nearly
50% more than either solution can individually rehost. This
shows that Greenhouse handles unique rehosting obstacles
that full-system emulation techniques cannot.
Rehosting other services. We used SaTC [6] to first identify

5800 32nd USENIX Security Symposium USENIX Association

the names of executables for common networked services. We
manually curated these names to generate lists of common
HTTP, UPnP, and DNS server binaries associated with these
services. Table 5 shows that Greenhouse rehosts 50.1% of
found HTTP web servers, 43.9% of found UPnP servers,
and 47.2% of found DNS servers. This demonstrates that
Greenhouse’s approach is not limited to web servers, and can
extend to rehost other types of firmware services.

HTTP UPnP DNS
Found Interact Found Interact Found Interact

ASUS 829 789 824 311 781 635
Belkin 61 33 47 4 41 24
D-Link 844 512 456 90 475 77
Linksys 83 23 42 2 68 54
Netgear 2,272 1,094 2,004 1,203 1,534 636
Tenda 156 64 108 71 49 21
TP-Link 902 66 430 83 256 33
TRENDnet 521 254 226 57 278 163
ZyXEL 7 6 15 1 13 7
Total 5,675 2,841 4,152 1,822 3,495 1,650

Table 5: Number of services of type (HTTP, UPnP, DNS) for
which Greenhouse was able to locate a web server for, and
subset which we successfully rehosted.

Impact of each intervention. To demonstrate how each in-
tervention contributes to the overall rehosting successes of
Greenhouse, we rerun Greenhouse to rehost HTTP web server
binaries multiple times with one of the eight interventions
(I1–I8) disabled each time. We do not include Interventions
I9 and I10 because they are necessary for the operation of
Greenhouse. We also include a run with the Patcher (Sec-
tion 6.3) disabled to study the impact of our binary patching
component. Table 6 shows the breakdown of each run with a
particular intervention disabled.

Notably, Greenhouse can rehost 2,455 (86.4%) of the 2,841
targets in the full run without augmenting its boot-up environ-
ment with data from FirmAE (no_bootsync). This number
drops significantly (to 1,787 or 62.9%) when our heuristics-
based runtime argument intervention (no_args) is disabled.
We also note that disabling IPv6 workarounds (no_ipv6) has
minimal impact on the rehosting result (2,562 or 90.2%). Af-
ter a manual investigation, we found that in many cases, the
firmware service supports both IPv4 and IPv6, and the patcher
forced the service to execute with only IPv4 without termina-
tion. Running without file sanitization (no_sanitize) caused
significant issues in our large-scale pipeline: Not replacing
special files caused many firmware samples to hang, crash, or
even corrupt the rehosting environment. Therefore, the num-
bers in the Table 6 for I2 (marked with *) are an extrapolation
based on the samples that did finish.

7.3 Case Studies

7.3.1 ASUS Firmware

We examined ASUS firmware services for which Green-
house rehosted 789 out of 846 to the Interact stage while

Intervention Disabled Unpack Execute Connect Interact
no_setup (I1) 4,886 2,523 1,412 884
no_sanitize (I2)* 1,477 990 923 895
no_bootsync (I3) 5,696 4,222 3,153 2,455
no_nvramfaker (I4) 4,309 3,272 1,714 1,075
no_argparser (I5) 5,524 3,507 2,034 1,787
no_dummy (I6) 5,591 4,627 3,474 2,690
no_bgscripts (I7) 5,613 4,562 3,295 2,438
no_ipv6 (I8) 5,614 3,671 3,293 2,562
no_patcher 5,617 4,273 3,177 2,644

Table 6: Impact of Greenhouse Interventions I1-I8 and the
Patcher on rehosting successes of HTTP web servers, as dis-
cussed in Sections 6 and 7. Each row represents a Greenhouse
large-scale rehosting attempt on our dataset of 7,140 firmware
images with the corresponding Intervention disabled.

FirmAE only rehosted 11. While both Greenhouse and Fir-
mAE rehosted similar numbers of services to the Execute
stage, FirmAE could not Connect to almost half of them, and
only 11 were able to Interact.

Configuration Reuse. We first analyzed 257 ASUS services
that FirmAE rehosted to Execute but was unable to Con-
nect, while Greenhouse successfully rehosted to Connect.
This represents the set of services where our interventions
likely mitigated roadblocks that are related to network con-
nectivity. Greenhouse made use of NVRAM data from ex-
ternal sources for 255 of them, most notably NVRAM data
from other Netgear images. Critical NVRAM values include
lan_ipaddr and env_path that directly affect service execu-
tion. By reusing configuration information from other images
in our collection, Greenhouse rehosted more services to the
Connect stage.

Iterative Interventions. We then analyzed 531 ASUS ser-
vices that FirmAE rehosted until Connect but not Interact,
and that Greenhouse rehosted to Interact. For most of these
services (461 out of 531), the emulated service in FirmAE re-
turned an HTTP status code of 200, but the actual web pages
displayed file-not-found error messages 2. The remaining
services either timed out, returned an empty HTML page,
or experienced authentication issues. Such services are less
suitable for analysis as they are likely missing parts of the
emulation environment that impact the service of interest.

In 517 of these cases, Greenhouse addresses the issue
through iterative interventions, including relocating missing
files (e.g., QIS_wizard.html or cert.pem). This shows the
impact of interventions of Greenhouse on the Execution Fi-
delity of rehosted services.

In summary, Greenhouse outperformed FirmAE due to in-
terventions and the iterative application of them. We also
migrated critical configuration data across firmware that Fir-
mAE does not.

2According to RFC 2616 [1] an HTTP 200 status code means “the request
has succeeded,” yet clearly these devices do not follow the specification.

USENIX Association 32nd USENIX Security Symposium 5801

7.3.2 Tenda Firmware

Greenhouse used the Wait Loop Patcher to patch 52 out of
55 Greenhouse-only rehosted Tenda services and applied the
Premature Exit Patcher on 26 out of 52 Tenda services. After
manual analysis, we identified a key roadblock on some Tenda
services: the ConnectCFM() function. This function accesses
the cfm binary, which interfaces with the CFM peripheral that
persists configuration data across reboots [37]. When unable
to access CFM, web servers either retry infinitely or exit with
the error message “connect cfm failed!” before initiating any
network behaviors. By patching the check leading the code to
exit or loop, Greenhouse forced the execution into network-
facing code.

7.3.3 TP-Link Firmware

We examined why Greenhouse successfully rehosted much
fewer Netgear and TP-Link services than FirmAE. The ma-
jor reason is that many web servers in Netgear and TP-Link
firmware heavily relied on communication with other pro-
cesses that the web servers themselves did not start. For
example, a TP-Link web server proxies all HTTP traffic to
another service through dbus-daemon, and both dbus-daemon
and the other service must be started by init.d scripts. Strictly
speaking, these targets do not belong to single-service rehost-
ing, but we still report them as rehosting failures for fairness.
We leave single-user, multi-service rehosting to future work.

7.4 Vulnerability Risk Assessment
To evaluate the applicability of rehosted services for vul-

nerability risk assessment, we follow FirmAE’s convention
and use the automatic exploit framework, RouterSploit. Pre-
vious works also used RouterSploit in evaluation [5, 9]. We
selected all rehosted web servers that reached at least Connect
for Greenhouse (3,526) and FirmAE (4,058) and replayed
125 known N-day exploits against each service.

FirmAE Greenhouse
PD CI IL AB PD CI IL AB

ASUS 0 16 0 0 0 0 0 0
Belkin 3 2 0 3 1 17 0 0
D-Link 168 351 149 21 97 281 84 10
Linksys 0 1 0 0 0 0 0 0
Netgear 3 79 0 0 60 79 60 0
Tenda 0 0 0 0 0 0 0 0
TP-Link 0 0 0 0 0 0 0 0
TRENDnet 13 11 24 0 5 17 5 1
ZyXEL 0 0 0 0 0 0 0 0

Total 187 460 173 24 163 394 149 11

Table 7: Breakdown of running 125 N-day exploits on re-
hosted services using RouterSploit. Each cell shows the num-
ber of exploits of a given type that successfully exploit a
rehosted image. PD = Password Disclosure. CI = Command
Injection. IL = Info Leak. AB = Authentication Bypass.

Results. As Table 7 shows, RouterSploit exploited 717 known
vulnerabilities across 3,526 Greenhouse-rehosted firmware

services. Meanwhile, RouterSploit found 844 known ex-
ploits on 4,058 samples rehosted by FirmAE. Despite not
conducting full-system emulation or modeling peripherals,
Greenhouse-rehosted services are sufficient to use for vulner-
ability risk assessment.

7.5 Fuzzing Rehosted Services
A key application for rehosting is automated vulnerability

discovery, particularly fuzzing. To evaluate the applicability
of Greenhouse-rehosted services for fuzzing, we use AFL++
to fuzz 3,526 firmware images that Greenhouse rehosted to a
fidelity level of Connect. We compare our results to the clos-
est work that does user-space fuzzing of Type-I firmwares,
EQUAFL. Due to resource constraints, we limit our selection
to 2,612 randomly chosen samples, making sure to include
the 70 samples from the EQUAFL dataset, even if Green-
house could not rehost all of them. Because the full EQUAFL
dataset is not available at the time of writing, we use the lat-
est firmware image of a device when we cannot locate the
original sample that EQUAFL used.

Additionally, we conduct a performance evaluation of
Greenhouse’s user-space emulation on eight firmware im-
ages from the EQUAFL dataset using Greenhouse+AFL and
EQUAFL. As EQUAFL positions itself as a strict improve-
ment over FirmAFL, we do not reevaluate FirmAFL. Finally,
we manually analyze the fuzzing results of eight rehosted
EQUAFL images and six randomly-chosen images (Table 9)
to confirm our rehosted emulation can find real-world vulner-
abilities.

We chose AFL++ as the fuzzer and built a generic fuzzing
harness for web servers, which emulates client connections
in AFL-QEMU. We discuss the implementation of harness
as well as why FirmAFL and EQUAFL do not generalize to
unseen firmware targets in Appendix.

7.5.1 Performance Evaluation vs EQUAFL

Each fuzzing experiment ran inside a Docker container on
a bare-metal server running Ubuntu 22.04 LTS with an 80-
core Intel Xeon Gold 5218R 2.10GHz CPU and 270GB of
RAM. For the eight EQUAFL targets, we ran our fuzzer and
EQUAFL’s fuzzer ten times for 24 hours each and measured
both the execution speed and total corpus count over time.

Figure 3 shows the fuzzing performance using AFL on
Greenhouse against EQUAFL for the eight rehosted httpd
servers. On average, Greenhouse-rehosted services (native
user-space emulation) were 2x faster than EQUAFL’s syn-
chronized filesystem approach.

7.5.2 Large-Scale Fuzzing

EQUAFL defines a fuzzable target as one where “the appli-
caton process can be initiated by the fuzzer without reporting
errors explicitly.” We use this same definition on the 2,612
fuzzed samples. Table 8 shows the fuzzability of the 2,612
samples rehosted by Greenhouse using a similar metric to

5802 32nd USENIX Security Symposium USENIX Association

0

1000

2000

3000

4000

5000

wnd
rm

acv
2

wn2
00

0rp
tv1

dsp
-w

21
5

dsl
-27

40
r

da
p-2

33
0

dir
-82

5

da
p-2

69
5

tew
-63

2b
rp

EQUAFL Greenhouse

Average Executions Per Second

0

2500

5000

7500

10000

12500

wnd
rm

acv
2

wn2
00

0rp
tv1

dsp
-w

21
5

dsl
-27

40
r

da
p-2

33
0

dir
-82

5

da
p-2

69
5

tew
-63

2b
rp

EQUAFL Greenhouse

Total Corpus Count

Figure 3: Fuzzing Performance of Greenhouse+AFL versus
EQUAFL.

Selected SUCC ERR HAN CRA
ASUS 502 451 18 22 11
Belkin 0 0 0 0 0
D-Link 409 290 19 74 26
Linksys 23 23 0 0 0
Netgear 1,462 957 324 0 181
Tenda 71 62 2 0 7
TP-Link 145 4 97 0 44
TRENDnet 0 0 41 0 0
ZyXEL 0 0 0 0 0
Total 2,612 1,787 460 96 269

Table 8: Fuzzability of Greenhouse rehosted and partially re-
hosted firmware images, where SUCC indicates a successful
fuzzing run, ERR indicates that fuzzing started but encoun-
tered errors, HAN means the target hung, and CRA means
the target crashed without starting fuzzing.

EQUAFL’s evaluation.
We also found that of the 70 images that were part of the

EQUAFL dataset, Greenhouse could only fuzz 45 of them.
However, we note that Greenhouse could fuzz a total of 1,787
images (68.4% of the tested set) and find a total of 18,599
raw crashes across 733 targets. As the number of targets that
EQUAFL can fuzz is limited by what its coupled full-system
emulation can rehost, we expect EQUAFL be limited to no
more than 571 targets. This demonstrates the scalability of
Greenhouse’s approach for large-scale rehosting and analysis.

7.5.3 Real-world Vulnerabilities

Due to the amount of effort needed to manually triage
crashes for all 1,787 firmware images fuzzed, we limit our
analysis to the subset of crashes discovered for the 14 ser-
vices in Table 9. We first filter crashing inputs using tmin
and md5sum to identify unique crashes. Then a human ana-
lyst examined these filtered crashes to see if they are false
positives. In total, we found 79 unique crashes across these
14 services. We confirmed that 26 out of 79 are legitimate
0-day vulnerabilities in firmware services, and have disclosed
this information to their respective vendors. None of the

Tmin inputs
(total crashes)

Unique crashes
(md5 + manual)

Unique
vulns

TEW_652BRP_v2.0R_2.00 9 1 1
AC1450_V1.0.0.6_1.0.3 23 5 1

FW_RT_AC750_30043808497 18 12 1
TEW-632BRPA1_FW1.10B31 42 11 6
DAP-2330_REVA_1.01RC014 14 1 1

WNDRMACv2_Version_1.0.0.4 23 7 0
DAP_1513_REVA_1.01 28 6 4
FW_RT_G32_C1_5002b 37 10 3

DAP-2695_REVA_1.11.RC044 22 1 1
WN2000RPT_V1.0.1.20 21 1 1

DIR-601_REVA_1.02 32 2 2
DIR-825_REVB_2.03 52 13 4
DIR-825 209EUb09 37 8 2

DSP-W215_REVB_v2.23B02 0 0 0
Total 358 79 26

Table 9: Vulnerabilities found through fuzzing 14 firmware
images rehosted with Greenhouse+AFL.

79 crashes analyzed were introduced by binary patching in
Greenhouse. A breakdown mapping each of these crashes to
their respective vulnerabilities can be found in the Appendix.

8 Limitations

Encrypted firmware. Greenhouse needs a high Extraction
Fidelity to perform its iterative rehosting approach. Our
patching approach also uses embedded function symbols like
exit(). We limit ourselves to rehosting firmware image that
are relatively complete, cooperative (no hidden, malicious, or
obfuscated binaries), and unencrypted.
QEMU limitations. Greenhouse uses QEMU-user to per-
form user-space emulation and is subject to any flaws and
limitations of the emulator. For example, QEMU-user has
limited support for the clone() syscall under MIPS. Due to
limitations in the abstraction when running the emulator in
user mode, unless clone() is called with very specific flags,
QEMU will not emulate it properly. This results in a num-
ber of MIPSEL binaries that implement fork servers using
clone() to fail. We estimate that this affects 147 out of 7,140
cases, about 2% of our firmware sample collection. We plan
to fix this issue in QEMU-user and submit a patch upstream.
angr limitations. Greenhouse uses angr to create CFGs, and
is thus subject to bugs and limitations in angr. A number of
MIPS targets (68, or 0.9% of our collection) crashed due to
assertion failures in angr when building CFGs.
Missing library functions. Some firmware makes use of li-
braries containing custom functions, usually for interacting
with peripherals. If these libraries are missing during extrac-
tion due to low Extraction Fidelity, rehosting further is close
to impossible. In some cases, these functions are found in the
libnvram library that we replace, which further complicates
the issue. Mitigating this roadblock would require dynam-
ically injecting custom stub functions for each special case
during rehosting, which we plan to address as an engineering
problem in the future.
False positives from patching. Greenhouse’s patching may

USENIX Association 32nd USENIX Security Symposium 5803

introduce false positives during fuzzing. Although we did not
encounter any such false positives in our manually examined
set, the possibility exists. The most likely way this can occur
is if Greenhouse patches a branching instruction responsible
for a security check. To mitigate this, Greenhouse keeps
an original copy of the binary it patches inside the exported
emulation, and a record of all instruction addresses patched.
A human analyst who is triaging a crash can compare against
the original binary to determine if the root cause is related to
a Greenhouse patch.

9 Related Work

Large-scale emulation. Costin et al. [9] is one of the earli-
est works that examined the feasibility of different emulation
approaches for firmware rehosting. It attempted rehosting
via chroot and user-space emulation. However, the authors
concluded that the fidelity loss was too much for user-space
emulation to be useful, and decided to use a full-system em-
ulator for rehosting. Recent works that perform large-scale
rehosting of Type-I firmware [5, 21, 23, 38] also build upon
and instrument OS-level emulators to automatically rehost
firmware images. Like Greenhouse, these approaches auto-
matically identify full-system emulation roadblocks and apply
interventions to resolve them.

Greenhouse differs from these works by being more selec-
tive in what to emulate. Because it focuses on rehosting a
single-service in user-space, Greenhouse can precisely and
iteratively apply interventions. If no appropriate intervention
is found, Greenhouse attempts to patch the binary.

ARI [26] takes a similar approach: It extends Firmadyne
and applies interventions to handle different failure cases on
Linux-based firmware. ARI iteratively emulates, tests, and
fixes the firmware image using their own fidelity criterion,
with a similar distinction between connectivity and interac-
tivity as Greenhouse. However, ARI does not patch and
still relies on Firmadyne’s full-system emulation to rehost
firmware images. Thus, ARI and Greenhouse are orthogonal
techniques with some similarities.
User-space emulation. Researchers have explored fuzzing
firmware images in user-space. FirmAFL [40] hybridizes user-
space execution with full-system emulation. EQUAFL [41]
fuzzes entirely in user-space by transplanting the filesystem
state of a rehosted firmware image to user-space. As discussed
in Appendix, these techniques require significant manual ef-
fort to support new targets and do not scale. Their perfor-
mance also depends on the full-system emulation technique
with which they are coupled. Greenhouse emulates a firmware
service entirely in user-space, while being scalable to a much
larger set of firmware images and analysis tools.
Other analysis approaches. Beyond fuzzing, researchers
have achieved success via other techniques. Costin et al. [8]
performed static analysis on firmware images by combining
a correlation engine with simple keyword searches. Recent

research analyzes programs by symbolically executing them
to find control flow bugs [11, 19, 29] or statically analyzing
the interactions between multiple binaries [6, 12] to detect
insecure data flows.
Rehosting Type-II and Type-III firmware. Heapster [16]
identifies the heap library used by the image for memory
allocation and uses symbolic execution to detect potential
vulnerabilities. PRETENDER [17] models MMIO behavior
by tracing behavior on the actual device, while P2IM [14]
tries to exhaustively probe for MMIO to generate a model.
µEmu [42] uses symbolic execution to model the image and
infer peripheral behavior from its constraints. Fuzzware [28]
combines these approaches by implementing its own instruc-
tion set architecture emulator. It iteratively probes MMIO
behavior via fuzzing and feeds the results into a symbolic
execution engine to derive models that are used to update
the emulation. Srinivasan et al. [31] tries to rehost Type-II
images by repackaging them as Linux applications rather than
complete firmware images.

The approaches taken by these works have a conceptual
similarity to Greenhouse in how they take “slices” of the
firmware image to emulate and expand their knowledge base
from there. Future work could look to adapt techniques from
one approach to the other.

10 Conclusion

We present Greenhouse, an automated system for large-
scale single-service rehosting of Linux-based firmware in
user-space. Greenhouse makes use of “best-effort” mitiga-
tions to iteratively adapt a firmware image and the emulated
environment to each other. We also define a more stringent
set of criteria for rehosting with respects to the end-goals of
emulating for dynamic analysis and vulnerability discovery.
We evaluate Greenhouse on a set of 7,140 Type-I firmware
images and rehost 2,841 of them to the minimal level of us-
ability under our new criteria. Using existing analysis tools
like RouterSploit and AFL, we find 717 N-day exploits and
26 0-day vulnerabilities. This demonstrates both the feasibil-
ity of single-service, user-space emulation in creating usable
emulated images for dynamic analysis.

11 Acknowledgement

The authors would like to thank the shepherd and anony-
mous reviewers for their guidance and feedback. This project
has received funding from the following sources: Defense
Advanced Research Projects Agency (DARPA) Contracts No.
HR001118C0060, FA875019C0003, and N6600120C4020;
the Department of the Interior Grant No. D22AP00145-00;
and National Science Foundation (NSF) Awards No. 2146568
and 2232915.

5804 32nd USENIX Security Symposium USENIX Association

References

[1] Hypertext Transfer Protocol – HTTP/1.1. RFC 2616,
June 1999.

[2] Amazon Web Services. FreeRTOS. https://
www.freertos.org.

[3] Arduino. Arduino – Home. https://
www.arduino.cc.

[4] Chen Cao, Le Guan, Jiang Ming, and Peng Liu. Device-
agnostic firmware execution is possible: A concolic
execution approach for peripheral emulation. In Annual
Computer Security Applications Conference (ACSAC),
2020.

[5] Daming D Chen, Maverick Woo, David Brumley, and
Manuel Egele. Towards automated dynamic analysis
for Linux-based embedded firmware. In Network and
Distributed System Security (NDSS) Symposium, 2016.

[6] Libo Chen, Yanhao Wang, Quanpu Cai, Yunfan Zhan,
Hong Hu, Jiaqi Linghu, Qinsheng Hou, Chao Zhang,
Haixin Duan, and Zhi Xue. Sharing more and checking
less: Leveraging common input keywords to detect bugs
in embedded systems. In USENIX Security Symposium,
pages 303–319, 2021.

[7] Abraham A Clements, Eric Gustafson, Tobias
Scharnowski, Paul Grosen, David Fritz, Christopher
Kruegel, Giovanni Vigna, Saurabh Bagchi, and Math-
ias Payer. HALucinator: Firmware re-hosting through
abstraction layer emulation. In 29th USENIX Secu-
rity Symposium (USENIX Security), pages 1201–1218,
2020.

[8] Andrei Costin, Jonas Zaddach, Aurélien Francillon, and
Davide Balzarotti. A large-scale analysis of the security
of embedded firmwares. In 23rd USENIX Security
Symposium (USENIX Security), pages 95–110, 2014.

[9] Andrei Costin, Apostolis Zarras, and Aurélien Francil-
lon. Automated dynamic firmware analysis at scale: a
case study on embedded web interfaces. In Proceedings
of the 11th ACM on Asia Conference on Computer and
Communications Security, pages 437–448, 2016.

[10] Zachary Cutlip and Decidedly Gray. nvram-faker.
https://github.com/zcutlip/nvram-faker. (Ac-
cessed on 2022-11-08).

[11] Drew Davidson, Benjamin Moench, Somesh Jha, and
Ristenpar Thomas. Fie on firmware: Finding vulnera-
bilities in embedded systems using symbolic execution.
In USENIX Security Symposium (USENIX), pages 463–
478, 2013.

[12] Redini et al. KARONTE: Detecting insecure multi-
binary interactions in embedded firmware. In IEEE
Symposium on Security and Privacy (SP), 2020.

[13] Andrew Fasano, Tiemoko Ballo, Marius Muench,
Tim Leek, Alexander Bulekov, Brendan Dolan-Gavitt,
Manuel Egele, Aurélien Francillon, Long Lu, Nick Gre-
gory, Davide Balzarotti, and William Robertson. SoK:
Enabling security analyses of embedded systems via
rehosting. In ACM Asia Conference on Computer and
Communications Security (ASIACCS), 2019.

[14] Bo Feng, Alejandro Mera, and Long Lu. P2im: Scal-
able and hardware-independent firmware testing via au-
tomatic peripheral interface modeling. In 29th USENIX
Security Symposium (USENIX Security), pages 1237–
1254, 2020.

[15] The Eclipse Foundation. 2020 IoT developer survey key
findings. https://iot.eclipse.org/community/
resources/iot-surveys/assets/iot-developer-
survey-2020.pdf. (Accessed on 2022-10-11).

[16] Fabio Gritti, Fabio Pagani, Ilya Grishchenko, Lukas
Dresel, Nilo Redini, Christopher Kruegel, and Giovanni
Vigna. HEAPSTER: Analyzing the security of dynamic
allocators for monolithic firmware images. In IEEE
Symposium on Security and Privacy (SP), pages 1559–
1559. IEEE Computer Society, 2022.

[17] Eric Gustafson, Marius Muench, Chad Spensky, Nilo
Redini, Aravind Machiry, Yanick Fratantonio, Da-
vide Balzarotti, Aurélien Francillon, Yung Ryn Choe,
Christophe Kruegel, et al. Toward the analysis of em-
bedded firmware through automated re-hosting. In 22nd
International Symposium on Research in Attacks, Intru-
sions and Defenses (RAID), pages 135–150, 2019.

[18] Mohammad Hasan. IoT analytics: State of
IoT 2022. https://iot-analytics.com/number-
connected-iot-devices/. (Accessed on 2022-10-
08).

[19] Grant Hernandez, Farhaan Fowze, Dave Tian, Tuba
Yavuz, and Kevin RB Butler. Firmusb: Vetting usb
device firmware using domain informed symbolic exe-
cution. In ACM SIGSAC Conference on Computer and
Communications Security (ACMCCS), 2017.

[20] Evan Johnson, Maxwell Bland, YiFei Zhu, Joshua Ma-
son, Stephen Checkoway, Stefan Savage, and Kirill
Levchenko. Jetset: Targeted firmware rehosting for
embedded systems. In 30th USENIX Security Sympo-
sium (USENIX Security), pages 321–338, 2021.

[21] Mingeun Kim, Dongkwan Kim, Eunsoo Kim, Suryeon
Kim, Yeongjin Jang, and Yongdae Kim. Firmae: To-
wards large-scale emulation of iot firmware for dynamic

USENIX Association 32nd USENIX Security Symposium 5805

https://www.freertos.org
https://www.freertos.org
https://www.arduino.cc
https://www.arduino.cc
https://github.com/zcutlip/nvram-faker
https://iot.eclipse.org/community/resources/iot-surveys/assets/iot-developer-survey-2020.pdf
https://iot.eclipse.org/community/resources/iot-surveys/assets/iot-developer-survey-2020.pdf
https://iot.eclipse.org/community/resources/iot-surveys/assets/iot-developer-survey-2020.pdf
https://iot-analytics.com/number-connected-iot-devices/
https://iot-analytics.com/number-connected-iot-devices/

analysis. In Annual Computer Security Applications
Conference (ACSAC), 2020.

[22] Alejandro Mera, Bo Feng, Long Lu, and Engin Kirda.
DICE: Automatic emulation of dma input channels for
dynamic firmware analysis. In IEEE Symposium on
Security and Privacy (SP), 2021.

[23] Marius Muench, Dario Nisi, Aurélien Francillon, and
Davide Balzarotti. Avatar2: A multi-target orchestration
platform. In Proceedings of the Workshop on Binary
Analysis Research (Colocated with NDSS Symposium
2018), volume 18, pages 1–11, 2018.

[24] Marius Muench, Jan Stijohann, Frank Kargl, Aurélien
Francillon, and Davide Balzarotti. What you corrupt
is not what you crash: Challenges in fuzzing embed-
ded devices. In The Network and Distributed System
Security (NDSS) Symposium, 2018.

[25] NIST. National vulnerability database. https://
nvd.nist.gov/. (Accessed on 2022-10-08).

[26] Ryan William Ramseyer. Automated Rehosting and
Instrumentation of Embedded Firmware. PhD thesis,
Massachusetts Institute of Technology, 2021.

[27] Jan Ruge, Jiska Classen, Francesco Gringoli, and
Matthias Hollick. Frankenstein: Advanced wireless
fuzzing to exploit new bluetooth escalation targets. In
USENIX Security Symposium (USENIX), 2020.

[28] Tobias Scharnowski, Nils Bars, Moritz Schloegel, Eric
Gustafson, Marius Muench, Giovanni Vigna, Christo-
pher Kruegel, Thorsten Holz, and Ali Abbasi. Fuzzware:
Using precise MMIO modeling for effective firmware
fuzzing. In USENIX Security Symposium (USENIX),
2022.

[29] Yan Shoshitaishvili, Ruoyu Wang, Christophe Hauser,
Christopher Kruegel, and Giovanni Vigna. Firmalice -
automatic detection of authentication bypass vulnerabili-
ties in binary firmware. In The Network and Distributed
System Security (NDSS) Symposium, 2015.

[30] Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls,
Nick Stephens, Mario Polino, Andrew Dutcher, John
Grosen, Siji Feng, Christophe Hauser, Christopher
Kruegel, et al. Sok:(state of) the art of war: Offen-
sive techniques in binary analysis. In IEEE Symposium
on Security and Privacy (SP), pages 138–157. IEEE,
2016.

[31] Jayashree Srinivasan, Sai Ritvik Tanksalkar, Paschal C
Amusuo, James C Davis, and Aravind Machiry. To-
wards rehosting embedded applications as Linux appli-
cations. In 53rd Annual IEEE/IFIP International Con-
ference on Dependable Systems and Networks (DSN),
2023.

[32] Prashast Srivastava, Hui Peng, Jiahao Li, Hamed
Okhravi, Howard Shrobe, and Mathias Payer. Firmfuzz:
Automated iot firmware introspection and analysis. In
Proceedings of the 2nd International ACM Workshop on
Security and Privacy for the Internet-of-Things, pages
15–21, 2019.

[33] Seyed Mohammadjavad Seyed Talebi, Hamid Tavakoli,
Hang Zhang, Zheng Zhang, Ardalan Amiri Sani, and
Zhiyun Qian. Charm: Facilitating dynamic analysis of
device drivers of mobile systems. In USENIX Security
Symposium (USENIX), 2018.

[34] Team82. State of XIoT security. https:
//claroty.com/resources/reports/state-of-
xiot-security-1h-2022, 2022.

[35] Tenda. Tenda - Ac21 firmware CVE -
OpenCVE. https://www.opencve.io/cve?vendor=
tenda&product=ac21_firmware. (Accessed on 2023-
19-05).

[36] threat9. routersploit: Exploitation framework for
embedded devices. https://github.com/threat9/
routersploit. (Accessed on 2022-10-08).

[37] Anton Viktorov. Tenda reverse. https://github.com/
latonita/tenda-reverse. (Accessed on 2022-10-
08).

[38] Jonas Zaddach, Luca Bruno, Aurelien Francillon, Da-
vide Balzarotti, et al. AVATAR: A framework to sup-
port dynamic security analysis of embedded systems’
firmwares. In The Network and Distributed System
Security (NDSS) Symposium, volume 14, pages 1–16,
2014.

[39] Michal Zalewski. American fuzzy lop. https://
lcamtuf.coredump.cx/afl/. (Accessed on 2022-10-
08).

[40] Yaowen Zheng, Ali Davanian, Heng Yin, Chengyu
Song, Hongsong Zhu, and Limin Sun. FIRM-AFL:
High-throughput greybox fuzzing of iot firmware via
augmented process emulation. In USENIX Security
Symposium (USENIX), 2019.

[41] Yaowen Zheng, Yuekang Li, Cen Zhang, Hongsong Zhu,
Yang Liu, and Limin Sun. Efficient greybox fuzzing of
applications in Linux-based IoT devices via enhanced
user-mode emulation. In Proceedings of the 31st ACM
SIGSOFT International Symposium on Software Testing
and Analysis. ACM, 2022.

[42] Wei Zhou, Le Guan, Peng Liu, and Yuqing Zhang. Au-
tomatic firmware emulation through invalidity-guided
knowledge inference. In USENIX Security Symposium
(USENIX), 2021.

5806 32nd USENIX Security Symposium USENIX Association

https://nvd.nist.gov/
https://nvd.nist.gov/
https://claroty.com/resources/reports/state-of-xiot-security-1h-2022
https://claroty.com/resources/reports/state-of-xiot-security-1h-2022
https://claroty.com/resources/reports/state-of-xiot-security-1h-2022
https://www.opencve.io/cve?vendor=tenda&product=ac21_firmware
https://www.opencve.io/cve?vendor=tenda&product=ac21_firmware
https://github.com/threat9/routersploit
https://github.com/threat9/routersploit
https://github.com/latonita/tenda-reverse
https://github.com/latonita/tenda-reverse
https://lcamtuf.coredump.cx/afl/
https://lcamtuf.coredump.cx/afl/

Appendix

Our Modifications in AFL++ for Fuzzing Web Servers.
We modified AFL++ to intercept accept() and redirect the
returned file descriptor to stdin. We terminate the web server
process when it attempts to respond to this file descriptor via
send(). This transforms a stateful web server into a program
that processes exactly one network request and terminates,
which is an ideal fit for fuzzing with AFL. We also hooked
other common networking-related syscalls to ensure that the
web server cannot detect the absence of an actual network.
Lastly, our harness automatically reasons about the address
that accept() returns to and uses it as the forking address to
accelerate fuzzing. Our harness is a 432-line patch file that
may apply to other versions of QEMU.

The rigidity of FirmAFL. We initially planned to adapt
FirmAFL’s fuzzing engine for our evaluation. However, Fir-
mAFL’s fuzzer is tightly coupled with their workflow and
thus is difficult to extend to new firmware services. Every Fir-
mAFL target has configuration files that contain key harness-
ing configuration settings, e.g., maximum execution counts
and fork addresses. These settings require manual reverse
engineering of the target web servers and cannot be obtained
automatically. Moreover, FirmAFL’s integration with AFL-
QEMU includes hard-coded comparisons against specific tar-
get IDs to determine fuzzing behavior.

The rigidity of EQUAFL. EQUAFL has less hardcoded
samples-specific logic compared to FirmAFL, but we still
found similar manually-inserted hooks to fix rehosted func-
tionality for at least nine of their 66 fuzzable samples.
EQUAFL’s state synchronization is also tightly coupled with
Firmadyne and difficult to adapt to other rehosting solutions.
We conclude that both FirmAFL and EQUAFL do not general-
ize well to new targets, and would require significant manual
effort for bootstrapping each new fuzzing target.

Discrepancies in Reported Numbers for FirmAE. Ta-
ble 10 presents the number of emulated webserver services
that successfully achieved each of the four rehosting stages
(Unpack, Execute, Connect and Interfact) in our experiment.
We evaluated Greenhouse and FirmAE based on the FirmAE
paper’s dataset, which consists of 1,124 unique firmware
images organized over the eight brands (excluding Tenda).
The numbers of rehosted services for FirmAE differ from
the original numbers reported in the FirmAE paper. This is
because we evaluated both platforms under stricter criteria
for success based on the stages discussed in Section 5. For
example, FirmAE considered a firmware target successfully
rehosted if an HTTP request returned without errors or time-
outs, which roughly matches the Connect milestone. While
this may appear sufficient at first, the check does not filter out

cases where a web server may have connectivity but not any
actual functionality, as seen among ASUS samples.

Manual crash triaging. Table 11 maps each of the 79
crashes found during our fuzzing of 14 images to 26 legit-
imate 0-day vulnerabilities. Not all unique crashes found
through fuzzing translate to real-world vulnerabilities. Some
crashes may be caused by the same root cause. Others may be
false positives due to assumptions made in our emulation. For
example: to keep things lightweight, our Greenhouse+AFL in-
tegration assumes a stateless program target. However, many
embedded web services preserve some form of state, such
as authenticated sessions. This may lead to crashes when
fuzzing that are not reproducible. We mark these crashes
as "Not Replicable" in our table. Some crashes also have
root causes that are too complex to determine within the time
frame of this paper. We mark these crashes as "Untriagable".

USENIX Association 32nd USENIX Security Symposium 5807

FirmAE Greenhouse
Brand Initial Unpack Execute Connect Interact Unpack Execute Connect Interact
ASUS 107 107 107 64 0 107 106 101 101
Belkin 37 37 37 23 5 37 34 25 19
D-Link 263 263 260 241 176 254 236 196 183
Linksys 55 55 53 46 31 53 26 19 18
Netgear 375 375 375 341 266 375 359 265 198
TP-Link 148 148 148 121 98 142 65 16 2
TRENDnet 119 119 112 77 41 97 91 62 47
Zyxel 20 20 20 10 6 20 15 8 6
Total 1,124 1,124 1,112 923 623 1,085 932 692 574

Table 10: FirmAE- and Greenhouse-rehosted web servers that achieved each of the four rehosting stages (Unpack, Execute,
Connect and Interfact) on the FirmAE dataset of 1,124 unique firmware images organized over eight brands (excluding Tenda).

Vuln No. Firmware Binary CWE Crashes
1 AC1450_V1.0.0.6_1.0.3 /usr/sbin/httpd CWE-822: Untrusted Pointer Dereference 5
2 WN2000RPT_V1.0.1.20 /bin/boa CWE-822: Untrusted Pointer Dereference 1
- WNDRMACv2_Firmware_Version_1.0.0.4 /usr/sbin/uhttpd Untriagable 7
3 DAP_1513_REVA_FIRMWARE_1.01 /bin/webs CWE-121: Stack-based Buffer Overflow 2
4 DAP_1513_REVA_FIRMWARE_1.01 /bin/webs CWE-476: NULL Pointer Dereference 2
5 DAP_1513_REVA_FIRMWARE_1.01 /bin/webs CWE-822: Untrusted Pointer Dereference 1
6 DAP_1513_REVA_FIRMWARE_1.01 /bin/webs CWE-121: Stack-based Buffer Overflow 1
7 DAP_2330_REVA_FIRMWARE_1.01RC014 /sbin/httpd CWE-122: Heap-based Buffer Overflow 1
8 DAP_2695_REVA_FIRMWARE_1.11.RC044 /sbin/httpd CWE-122: Heap-based Buffer Overflow 1
9 DIR_601_REVA_FIRMWARE_1.02 /sbin/httpd CWE-121: Stack-based Buffer Overflow 1

10 DIR_601_REVA_FIRMWARE_1.02 /sbin/httpd CWE-121: Stack-based Buffer Overflow 1
11 DIR_825_fw_revb_209EUb09_03_ALL_multi_20130114 /sbin/httpd CWE-121: Stack-based Buffer Overflow 6
12 DIR_825_fw_revb_209EUb09_03_ALL_multi_20130114 /sbin/httpd CWE-122: Heap-based Buffer Overflow 2

- DIR_825_fw_revb_209EUb09_03_ALL_multi_20130114 /sbin/httpd Not Replicable 1
13 DIR_825_REVB_FIRMWARE_2.03 /sbin/httpd CWE-121: Stack-based Buffer Overflow 8
14 DIR_825_REVB_FIRMWARE_2.03 /sbin/httpd CWE-252: Unchecked Return Value 1
15 DIR_825_REVB_FIRMWARE_2.03 /sbin/httpd CWE-122: Heap-based Buffer Overflow 4
16 FW_RT_AC750_30043808497 /usr/sbin/httpd CWE-252: Unchecked Return Value 12
17 FW_RT_G32_C1_5002b /usr/sbin/httpd CWE-121: Stack-based Buffer Overflow 5
18 FW_RT_G32_C1_5002b /usr/sbin/httpd CWE-121: Stack-based Buffer Overflow 3
19 FW_RT_G32_C1_5002b /usr/sbin/httpd CWE-121: Stack-based Buffer Overflow 2
20 TEW_632BRPA1_FW1.10B31_ /sbin/httpd CWE-122: Heap-based Buffer Overflow 3
21 TEW_632BRPA1_FW1.10B31_ /sbin/httpd CWE-252: Unchecked Return Value 2
22 TEW_632BRPA1_FW1.10B31_ /sbin/httpd CWE-121: Stack-based Buffer Overflow 3
23 TEW_632BRPA1_FW1.10B31_ /sbin/httpd CWE-121: Stack-based Buffer Overflow 1
24 TEW_632BRPA1_FW1.10B31_ /sbin/httpd CWE-121: Stack-based Buffer Overflow 1
25 TEW_632BRPA1_FW1.10B31_ /sbin/httpd CWE-122: Heap-based Buffer Overflow 1
26 TEW_652BRP_v2.0R_2.00_ /sbin/httpd CWE-121: Stack-based Buffer Overflow 1

Table 11: Mapping of the 26 reported 0-days to the 79 crashes found through fuzzing 14 firmware images with Greenhouse and
AFL++. The number of unique crashes that map to that 0-day are listed with the corresponding firmware, binary and CWE.

5808 32nd USENIX Security Symposium USENIX Association

	Introduction
	Background and Motivation
	Rehosting Goals
	Rehosting Fidelity
	Existing Approaches
	Motivation

	Single-Service Rehosting
	Greenhouse Overview
	File System Extraction
	Target Emulation
	Fidelity Testing
	Service Fixing
	Exporting Results

	Rehosting Metrics
	Roadblocks and Interventions
	Roadblocks
	Interventions
	Patching

	Evaluation
	Firmware Image Collection
	Firmware Rehosting Results
	Case Studies
	ASUS Firmware
	Tenda Firmware
	TP-Link Firmware

	Vulnerability Risk Assessment
	Fuzzing Rehosted Services
	Performance Evaluation vs EQUAFL
	Large-Scale Fuzzing
	Real-world Vulnerabilities

	Limitations
	Related Work
	Conclusion
	Acknowledgement

